Archive for the ‘Enterprise Architecture’ Category

Focus: Analysis vs Design

January 4, 2017

Preamble

Definitions should never turn into wages of words as they should only be judged on their purpose and utility, with  such assessment best achieved by comparing and adjusting the meaning of neighboring concepts with regard to tasks at hand.

GChirico_prodigal-son

Analysis & Design as Duet (Giorgio de Chirico)

That approach can be applied to the terms “analysis” and “design” as used in systems engineering.

What: Logic & Engineering

Whatever the idiosyncrasies and fuzziness of business concerns and contexts, at the end of the day business and functional requirements of supporting systems will have to be coerced into the uncompromising logic of computers. Assuming that analysis and design are set along that path, they could be characterized accordingly.

As a matter of fact, a fact all too often ignored, a formal basis can be used to distinguish between analysis and design models, the former for the consolidation of requirements across business domains and enterprise organization, the latter for systems and software designs:

  • Business analysis models are descriptive (aka extensional); they try to put actual objects, events, and processes into categories.
  • System engineering models are prescriptive (aka intensional); they define what is expected of systems components and how to develop them.
Squaring Logic with Engineering

Squaring Logic with Engineering

As a confirmation of its validity, that classification along the logic basis of models can be neatly crossed with engineering concerns:

  • Applications: engineering deals with the realization of business needs expressed as use cases or users’ stories. Engineering units are self-contained with specific life-spans.
  • Architectures: engineering deals with supporting assets at enterprise level. Engineering units are associated with shared functionalities without specific life-spans.

That taxonomy can be used to square the understanding of analysis, designs, and architectures.

Where: Business unit or Corporate

Reversing the perspective from content to context, the formal basis of analysis and design can also be crossed with their organizational framework:

  • Analysis is to be carried out locally within business units.
  • Designs are to be set both locally for applications, and at enterprise level for architectures.

Organizational dependencies will determine the roles, responsibilities, and time-frames associated with analysis and design.

Who: Analysts, Architects, Engineers

Contents and contexts are to determine the skills and responsibility for stakeholders, architects, analysts and engineers. On that account:

  • Analysis should be the shared responsibility of business and system analysts.
  • Designs would be solely under the authority of architects and engineers.

The possibility for agents to collaborate and share responsibility will determine the time-frames of analysis and design .

When: Continuous or Discrete

As far as project management is concerned, time is the crux of the matter: paraphrasing Einstein, the only reason for processes [time] is so that everything doesn’t happen at once. Hence the importance of characterizing analysis and design according to the nature of their time-scale:

  • At application level analysis and design can be carried out iteratively along a continuously time-scale.
  • At enterprise level the analysis of business objectives and the design of architectures will require milestones set along discrete time-scales.

The combination of organizational and timing constraints will determine analysis and design modus operandi.

How: Agile or Phased

Finally, the distinction between analysis and design will depend on the software engineering MO, as epitomized by the agile vs phased debate:

  • The agile development model combines analysis, design, and development into a single activity carried out iteratively. It is arguably the option of choice providing the two conditions about shared ownership and continuous delivery can be met.
  • Phased development models may rely on different arrangements but most will include a distinction between requirements analysis and software design.

That makes for an obvious conclusion: whether analysis and design are phased or carried out collaboratively, understanding their purpose and nature is a key success factor for systems and software engineering.

PS: Darwin vs Turing

As pointed out by Daniel Dennett (“From Bacteria to Bach, and Back“), the meaning of analysis and design can be neatly rooted in the theoretical foundations of evolution and computer science.

Darwin built his model of Natural Selection bottom up from the analysis of actual live beings. Roundly refuting the hypothesis of some “intelligent designer”, Darwin’s work epitomizes how ontologies built from observations (aka analysis models) can account for the origin, structure and behaviors of individuals.

Conversely, Turing’s thesis of computation is built top-down from established formal principles to software artifacts. In that case prior logical ontologies are applied to design models meant to realize intended capabilities.

Further Reading

Business Agility vs Systems Entropy

November 28, 2016

Synopsis

As already noted, the seamless integration of business processes and IT systems may bring new relevancy to the OOAD (Observation, Orientation, Decision, Action) loop, a real-time decision-making paradigm originally developed by Colonel John Boyd for USAF fighter jets.

Agility: Orientation (Lazlo Moholo-Nagy)

Agility & Orientation (Lazlo Moholo-Nagy)

Of particular interest for today’s business operational decision-making is the orientation step, i.e the actual positioning of actors and the associated cognitive representations; the point being to use AI deep learning capabilities to surmise opponents plans and misdirect their anticipations. That new dimension and its focus on information brings back cybernetics as a tool for enterprise governance.

In the Loop: OOAD & Information Processing

Whatever the topic (engineering, business, or architecture), the concept of agility cannot be understood without defining some supporting context. For OODA that would include: territories (markets) for observations (data); maps for orientation (analytics); business objectives for decisions; and supporting systems for action.

OODA loop and its actual (red) and symbolic (blue) contexts.

OODA loop and its actual (red) and symbolic (blue) contexts.

One step further, contexts may be readily matched with systems description:

  • Business contexts (territories) for observations.
  • Models of business objects (maps) for orientation.
  • Business logic (objectives) for decisions.
  • Business processes (supporting systems) for action.
ccc

The OODA loop and System Perspectives

That provides a unified description of the different aspects of business agility, from the OODA loop and operations to architectures and engineering.

Architectures & Business Agility

Once the contexts are identified, agility in the OODA loop will depend on architecture consistency, plasticity, and versatility.

Architecture consistency (left) is supposed to be achieved by systems engineering out of the OODA loop:

  • Technical architecture: alignment of actual systems and territories (red) so that actions and observations can be kept congruent.
  • Software architecture: alignment of symbolic maps and objectives (blue) so that orientation and decisions can be continuously adjusted.

Functional architecture (right) is to bridge the gap between technical and software architectures and provides for operational coupling.

Business Agility: systems architectures and business operations

Business Agility: systems architectures and business operations

Operational coupling depends on functional architecture and is carried on within the OODA loop. The challenge is to change tack on-the-fly with minimum frictions between actual and symbolic contexts, i.e:

  • Discrepancies between business objects (maps and orientation) and business contexts (territories and observation).
  • Departure between business logic (objectives and decisions) and business processes (systems and actions)

When positive, operational coupling associates business agility with its architecture counterpart, namely plasticity and versatility; when negative, it suffers from frictions, or what cybernetics calls entropy.

Systems & Entropy

Taking a leaf from thermodynamics, cybernetics defines entropy as a measure of the (supposedly negative) variation in the value of the information supporting the control of viable systems.

With regard to corporate governance and operational decision-making, entropy arises from faults between environments and symbolic surrogates, either for objects (misleading orientations from actual observations) or activities (unforeseen consequences of decisions when carried out as actions).

So long as architectures and operations were set along different time-frames (e.g strategic and tactical), cybernetics were of limited relevancy. But the seamless integration of data analytics, operational decision-making, and IT supporting systems puts a new light on the role of entropy, as illustrated by Boyd’s OODA and its orientation component.

Orientation & Agility

While much has been written about how data analytics and operational decision-making can be neatly and easily fitted in the OODA paradigm, a particular attention is to be paid to orientation.

As noted before, the concept of Orientation comes with a twofold meaning, actual and symbolic:

  • Actual: the positioning of an agent with regard to external (e.g spacial) coordinates, possibly qualified with the agent’s abilities to observe, move, or act.
  • Symbolic: the positioning of an agent with regard to his own internal (e.g beliefs or aims) references, possibly mixed with the known or presumed orientation of other agents, opponents or associates.

That dual understanding underlines the importance of symbolic representations in getting competitive edges, either directly through accurate and up-to-date orientation, or indirectly by inducing opponents’ disorientation.

Agility vs Entropy

Competition in networked digital markets is carried out at enterprise gates, which puts the OODA loop at the nexus of information flows. As a corollary, what is at stake is not limited to immediate business gains but extends to corporate knowledge and enterprise governance; translated into cybernetics parlance, a competitive edge would depend on enterprise ability to export entropy, that is to decrease confusion and disorder inside, and increase it outside.

Working on that assumption, one should first characterize the flows of information to be considered:

  • Territories and observations: identification of business objects and events, collection and analysis of associated data.
  • Maps and orientations: structured and consistent description of business domains.
  • Objectives and decisions: structured and consistent description of business activities and rules.
  • Systems and actions: business processes and capabilities of supporting systems.
cccc

Static assessment of technical and software architectures for respectively observation and decision

Then, a static assessment of information flows would start with the standing of technical and software architecture with regard to competition:

  • Technical architecture: how the alignment of operations and resources facilitate actions and observations.
  • Software architecture: how the combined descriptions of business objects and logic facilitate orientation and decision.

A dynamic assessment would be carried out within the OODA loop and deal with the role of functional architecture in support of operational coupling:

  • How the mapping of territories’ identities and features help observation and orientation.
  • How decision-making and the realization of business objectives are supported by processes’ designs.
ccccc

Dynamic assessment of decision-making and the realization of business objectives’ as supported by processes’ designs.

Assuming a corporate cousin of  Maxwell’s demon with deep learning capabilities standing at the gates in its OODA loop, his job would be to analyze the flows and discover ways to decrease internal complexity (i.e enterprise representations) and increase external one (i.e competitors’ representations).

Further Readings

Business Agility & the OODA Loop

November 21, 2016

Preamble

The OOAD (Observation, Orientation, Decision, Action) loop is a real-time decision-making paradigm developed in the sixties by Colonel John Boyd from his experience as fighter pilot and military strategist.

(Moholy Nagy)

How to get inside opponent’s loop (Lazlo Moholy-Nagy)

The relevancy of OODA for today’s operational decision-making comes from the seamless integration of IT systems with business operations and the resulting merits of agile development processes.

Business: End of Discrete Time-Frames

Business governance was used to be phased: analyze the market, select opportunities, build capabilities, launch operations. No more. With the melting of the fences between actual and symbolic realms, periodic transitional events have lost most of their relevancy. Deprived of discrete and robust time-frames, the weaving of observed facts with business plans has to be managed on the fly. Success now comes from continuous readiness, quicker tempo, and the ability to operate inside adversaries’ time-scales, for defense (force competitor out of favorable position) as well as offense (get a competitive edge). Hence the reference to dogfights.

Dogfights & Agile Primacy

John Boyd train of thoughts started with the observation that, despite the apparent superiority of the soviet Mig 15 on US F-86 during the Korea war, US fighters stood their ground. From that factual observation it took Boyd’s comprehensive engineering work to demonstrate that as far as dogfights were concerned fast transients between maneuvers (aka agility) was more important than technical capabilities. Pushed up Pentagon’s reluctant ladders by Boyd’s sturdy determination, that conclusion have had wide-ranging consequences in the design of USAF fighters and pilots formation for the following generations. Its influence also spread to management, even if theories’ turnover is much faster there, and shelf-life much shorter.

Nowadays, with the accelerated integration of business processes with IT systems, agility is making a comeback from the software engineering corner. Reflecting business and IT convergence, principles like iterative development, just-in-time delivery, and lean processes, all epitomized by the agile software development model, are progressively mingling into business practices with strong resemblances to dogfights; and the resemblances are not only symbolic.

IT Systems & Business Competition

While some similarities between dogfights and business competition may seem metaphorical, one critical aspect is all too real, namely the increasing importance of supporting machines, IT systems or fighter jets.

Basically, IT systems, like fighters’ electronics, are tasked to observe environments, analyse changes in relation to position and objectives, and support decision-making. But today’s systems go further with two qualitative leaps:

  • The seamless integration of physical and symbolic flows let systems manage some overlapping between supporting decisions and carrying out actions.
  • Due to their artificial intelligence capabilities, systems can learn on-the-job and improve their performances in real-time feedback loops.

When combined, these two trends have drastic impact on the way machines can support human activities in real-time competitive situations. More to the point, they bring new light on business agility.

Business Agility

As illustrated by the radical transformation of fighter cockpits, the merging of analog and digital flows leaves little room for human mediation: data must be processed into information and presented instantly along two critical dimensions, one for decision-making, the other for information life-cycle:

  • Man/Machine interfaces have to materialize the merging of actual and symbolic realms as to support just-in-time decision-making.
  • The replacement of phased selected updates of environment data by continuous changes in raw and massive data means that the status of information has to be incorporated with the information itself, yet without impairing decision-making.

Beyond obvious differences between dogfights and business competition, that double exigence is to characterize business agility:

  1. Instant understanding of changes in business opportunities (Observation) .
  2. Simultaneous assessment of the reliability and shelf-life of pertaining information with regard to current positions and operations (Orientation).
  3. Weighting of options with regard to enterprise capabilities and broader objectives (Decision).
  4. Carrying out of decisions within the relevant time-span (Action).

That understanding of business agility is to be compared with its development and architecture cousins. Yet it doesn’t seem to add much to data analytics and operational decision-making. That is until the concept of orientation is reassessed.

Agility & Orientation: Task vs Tack

To begin with basics, the concept of Orientation comes with a twofold meaning, actual and symbolic:

  • Actual: a position with regard to external (e.g spacial) coordinates, possibly qualified with abilities to observe, move, or act.
  • Symbolic: a position with regard to internal (e.g beliefs or aims) references, possibly mixed with known or presumed orientation of other agents, opponents or associates.

When business is considered, data analytics is supposed to deal comprehensively and accurately with markets’ actual orientations. But the symbolic facet is left largely unexplored.

Boyd’s contribution is to bring together both aspects and combine them into actual practice, namely how to foretell the tack of your opponents from their actual tracks as well as their surmised plans, while fooling them about your own moves, actual or planned.

Such ambitions once out of reach, can now be fulfilled due to the combination of big data, artificial intelligence, and the exponential growth on computing power.

Further Readings

 

Focus: MDA & UML

November 9, 2016

 Preamble

UML (Unified Modeling Language) and MDA (Model Driven Architecture) epitomize the lack of focus and consistency of the OMG’s strategy. As it’s safe to assume that there can be no architectures without models, MDA and UML arguably bring sensible (if not perfect) schemes without significant competition.

Eugene de Salignac

Architectures & Models (Eugene de Salignac)

Unfortunately, not much has been made to play on their obvious complementarity and to exploit their synergies.

MDA & the Nature of Models

Model driven architecture (MDA) can be seen as the main (only ?) documented example of model based systems engineering. Its taxonomy organizes models within three layers:

  • Computation independent models (CIMs) describe organization and business processes independently of the role played by supporting systems.
  • Platform independent models (PIMs) describe the functionalities supported by systems independently of their implementation.
  • Platform specific models (PSMs) describe systems components depending on implementation platforms.

Engineering can then be managed along architecture layers (a), or carried out as a whole for each application (b).

mapsterrits_landingschar

Managing changes at architecture (a) or application (b) level.

It’s important to note that the MDA framework is completely neutral with regard to methods: engineering processes can be organized as phased activities (procedural), iterations (agile), or artifacts transformation (declarative).

Logic & The Matter of Models

Whatever the idiosyncrasies and fuzziness of business concerns and contexts, at the end of the day requirements will have to be coerced into the strict logic of computer systems. That may be a challenging task to be carried out directly, but less so if upheld by models.

As it happens, a fact all too often ignored, models come with sound logical foundations that can be used to formalize the mapping of requirements into specifications; schematically, models are to be set in two formal categories:

  • Descriptive (aka extensional) ones try to classify actual objects, events, and processes into categories.
  • Prescriptive (aka intensional) ones specify what is expected of systems components and how to develop them.
The logical basis of models

The logical basis of models

Interestingly, that distinction provides a formal justification to the one between analysis and design models, the former for the consolidation of requirements across business domains and enterprise organization, the latter for systems and software designs. Such logical foundations could help to manage the mapping of business processes and systems architectures.

UML & the Anatomy of Models

Except scientific computation, there is no reason to assume a-priori congruence between the description of business objects and processes and the specification of the software components. As a corollary, their respective structures and features are better to be dealt with separately.

But that’s not the case at architecture level, where domains and identities have to be managed continuously and consistency on the two sides of the business/system divide. At this level (aka enterprise architecture), responsibilities and identification and communication mechanisms must be defined uniformly.

Compared to MDA set at architecture level, UML describes the corresponding artifacts for business, systems, and platform layers. Regardless of the confusing terminology (layers or levels), that puts MDA and UML along orthogonal dimensions: the former (layers) deals with the nature of contents, the latter (levels) with their structures and features.

MDA is only concerned with architectures, UML describe the structure of architecture components.

MDA is only concerned with architectures, UML describe the structure of architecture components.

Using the same unified modeling language across business, systems, and platform layers is to clearly and directly enhance transparency and traceability; but the full extent of MDA/UML cross-benefits is to appear when models logic is taken into account.

Models & Systems Evolution

As illustrated by the increasing number of systemic crashes, systems obsolescence is no longer a matter of long-term planning but of operational continuity: change has become the rule and as far as complex and perennial systems are concerned, architectures are to evolve while supporting their functional duties seamlessly. If that is to be achieved, modularity and a degree of consistency are necessary between the nature of changes and their engineering. That’s where MDA is to help.

As pointed to above, modularity is best achieved with regard to level (architecture, element) and models contents (business, systems, platforms).

At architecture level, changes in domains, identification, and categories must be aligned between descriptive (enterprise) and prescriptive (systems) models. That will be best achieved with UML models across all MDA layers.

Using UML and MDA helps to align descriptive and prescriptive models at architecture level.

Using UML and MDA helps to align descriptive and prescriptive models at architecture level.

The constraints of continuity and consistency can be somewhat eased at element level: if descriptive (business) and prescriptive (systems) models of structures and features are to be consistent, they are not necessarily congruent. On component (prescriptive/design) side, UML and object-oriented design (OOD) are to keep them encapsulated. As for the business (descriptive/analysis) side, since structures and features can be modeled separately (and OOD not necessarily the best option), any language (UML, BPMN, DSL,etc.) can be used. In between, the structure (aka signature) of messages passed at architecture level is to be specified depending on communication framework.

Considering the new challenges brought about by the comprehensive interoperability of heterogeneous systems, the OMG should reassess the full range of latent possibilities to be found in its engineering portfolio.

Further Reading

Business Problems shouldn’t sleep with IT Solutions

October 8, 2016

Preamble

The often mentioned distinction between problem and solution levels may make sense from an analyst’s particular point of view, whether business or system.  But blending problems and solutions independently of their nature becomes a serious over simplification for enterprise architects considering that one of their prime responsibility is to keep apart business problems from IT solutions.

(Mircea Cantor)

Functional problem with technical solution (Mircea Cantor)

That issue is relevant from engineering as well as business perspective.

Engineering View: Problem Levels & Architecture Layers

As long as computers are used to solve problems the only concern is to find the best solution, and the only architecture of concern is software’s.

But enterprise architects have to deal with systems, not computers, namely how to best serve business objectives with corporate resources, across business units and along business cycles. For that purpose resources (financial, human, technical) and their use are to be layered according to the nature of problems and solutions: business processes (enterprise), supporting functionalities (systems), and technologies (platforms).

From an engineering perspective, the intended congruence between problems levels and architecture layers can be illustrated with the OMG’s model driven architecture (MDA) framework:

  • Computation independent models (CIMs) deal with business processes solutions, to be translated into functional problems for supporting systems.
  • Platform independent models (PIMs) deal with functional solutions, to be translated into technical problems for supporting platforms.
  • Platform specific models (PSMs) deal with technical solutions, to be implemented as code.
MDA layers correspond to a clear hierarchy of problems and solutions

MDA layers can be mapped to a clear hierarchy of problems and solutions

Along that understanding, architectures can be seen as solutions, and the primary responsibility of enterprise architects is to see that problems/solutions brace remain in their respective swim-lanes.

Business View: Business Value & Enterprise Assets

Whereas the engineering perspective may appear technical or specific to a model based approach, the same issue is all the more significant when expressed with regard to business concerns and corporate governance. In that case the critical distinction is between business value and assets:

  • Business value: Problems are set by business opportunities, and solutions by processes and applications. The critical factor is reactivity and time-to-market.
  • Assets: Problems are set by business objectives and strategy, and solutions are to be supported by organization and systems capabilities. The critical factor is reuse and ROI.
Decision-making must distinguish between business opportunities and enterprise governance

Decision-making must distinguish between business opportunities and enterprise governance

If opportunities are to be seized and operations managed on the fly  yet tally with strategic decisions, respective problems and solutions should be kept apart. Juggling with their dynamic alignment is at the core of enterprise architects’ job description.

Enterprise Architects & Governance

Engineering and business perspectives are not to be seen as the terms of an alternative to be picked by enterprise architects. As a matter of fact they must be crossed and governance policies selected depending on the point of view:

  • Looking at EA from an engineering perspective,  the business one will focus on systems governance and assets management as epitomized by model based systems engineering schemes.
  • Looking at EA from a business perspective, the engineering one will focus on lean and just-in-time solutions, as epitomized by agile development models.

As far as governance of large and complex corporate entities, supposedly EA’s primary target, must deal with tactical, operational, and strategic concerns, the nexus between business and engineering perspectives is where enterprise architects are to stand.

 

 

Caminao & EACOE

September 19, 2016

Synopsis

Taking a cue from a recent discussion about the Enterprise Architecture Center Of Excellence (EACOE), the intent of this article is to apply EACOE criteria to the Caminao framework:

(M.Kippenberger)


How to assess EA frameworks and methodologies (M. Kippenberger)

  1. Business Initiatives (Projects): Initiatives should address cross-organizational or individual concerns.
  2. Directed Guidance: Explicit methods, tools, and artifacts.
  3. Consistency and Simplicity: Single frame of symbolic representation and reference.
  4. Structured and Precise Definitions: Frame built from a compact, complete, and consistent set of concepts to be logically extended.
  5. Clarity and Reason in Modeling: Two distinct model sets – Architecture Models and Implementation Models.
  6. Value in Models Transformations: Why develop artifacts that do not lead anywhere?
  7. Skills Acquisition: Enterprise Architecture skills are acquired through practice and experience.
  8. Multiple Architect Roles: Collaboration between the many architect roles in contemporary business.

Business Initiatives: Managing Expectations & Commitments

Enterprise architecture is meant to serve business purposes set across organizational units. If intents and values of corresponding initiatives are to be properly measured and prioritized, portfolios management must tackle two inherent difficulties:

  • How to rank a motley of expectations and commitments possibly subject to cross-dependencies.
  • How to plan and schedule projects whose outcomes are set within changing environments governed along different time-frames.
Qualified Information Flows across Architectures and Processes

Enterprise Architecture & Separation of Concerns

That can be made easier if initiatives are classified and documented according to scope (enterprise, systems, platforms) and purpose (business processes, systems engineering, operations).

Frame of Reference: A Comprehensive and Consistent Modeling Paradigm

Enterprise architecture as a corporate discipline is upheld by the needs of large and complex organizations, which implies a wide range of units carrying out their projects according to their own concerns, organization, and methods.

Targets and Modeling Languages

All-inclusive Modeling Paradigm: Scope and Languages

As it’s safe to assume that different modeling languages are also involved, a frame of reference must be supported by a modeling paradigm covering the shared semantics of the basic domains of concern, namely: business processes, enterprise organization, systems functional architectures, and software engineering. That can be done with the conceptual backbone of the Caminao framework.

Directed Guidance: Model Driven Architecture

To be of any use, methods and tools should not become a constraint, introduce cumbersome procedures, or induce unjustified overheads. Hence the benefit of model based blueprints that could be adjusted according to the nature of problems (business value, assets, operations) and contexts (enterprise, systems, technologies), e.g:

  • Agile processes will combine requirements with development and bypass analysis phases (a).
  • Projects meant to be implemented by Commercial-Off-The-Shelf Software (COTS) will start with business requirements, possibly using BPM, then carry on directly to platform implementation, bypassing system analysis and design phases (b).
  • Changes in enterprise architecture capabilities will be rooted in analysis of enterprise objectives, possibly but not necessarily with inputs from business and operational requirements, continue with analysis and design of systems functionalities, and implement the corresponding resources at platform level (c).
  • Projects dealing with operational concerns will be conducted directly through systems design and platform implementation (d).
Processes should be devised according enterprise concerns and engineering contexts

Blueprints set according to layers and purpose

That scheme illustrates the benefits of  combining EA with model based engineering schemes.

Consistency and Simplicity: Seven Concepts & Three layers

As far as architectures are concerned, consistency and simplicity are best achieved through a clear understanding of architecture capabilities as defined by the Zachman framework: who, what, how, where, and when.

ccc

Well established concepts are used to describe architecture capabilities

The semantics are to be defined in relation to architecture level: business, systems, and platforms. The role of enterprise architects is then to see how assets can best realize capabilities, and to align processes to supporting capabilities.

Structured and Precise Definitions: Formal Operators uniformly applied across Modeling Lanes

As illustrated a-contrario by the plenty of “universal” standards, combining simplicity, consistency, and all-inclusive relevancy is not easily achieved.

A way out of the conundrum is to delineate a small set of formal constructs and operators to be uniformly, comprehensively and consistently applied across models to connect, structure, and specialize conceptual nodes independently of their semantics:

vvv

Conceptual nodes are connected, structured, and specialized using a single set of formal constructs.

On one hand such constructs provide a syntactic glue between the building blocs defined from basic concepts. On the other hand the semantics of these blocs can be extended and refined along the four standard modeling lanes (aka perspectives): objects, symbolic representations, activities, and execution states.

Clarity and Reason: Descriptive (extensional) vs Prescriptive (intensional) Models

Clarity for enterprise architects should begin with a distinction between environments and enterprise, the former given as realms of changing opportunities subordinate to external factors, the latter supposedly governed according to purposes and plans. Reason is needed to manage the relationship between environments and enterprise architectures, and that endeavor  fully depends on architects’ ability to build serviceable symbolic representations (aka models).

That makes for two distinct model sets:

  • Business environments are represented by extensional models, i.e ones describing actual objects and activities with regard to the categories set by enterprise business model.
  • Enterprise architectures are described by intensional models, i.e ones prescribing how organization and systems are to be built.
vvv

Two distinct model sets: descriptive for business environments, prescriptive for systems architectures and artifacts.

Depending on size, complexity of organizations and systems, a level of indirection can be managed in between, as illustrated by MDA distinction between computation independent (CIM), platform independent PIM), and platform specific (PSM) models. PIMs and PSMs would correspond respectively to EACOE architecture and implementation.

Value in Models Transformation: Lean, Users Driven, & Knowledge Based

EA being a management discipline, it is bound to induce a motley of models to be shared and distributed across business and supporting units. In order to avoid a glut of redundant models, cumbersome procedures, and poor return on investment, processes have to remain lean and cut to the bone.

That can be achieved if models are justified by clearly identified purpose (governance or engineering), and set with clear semantics (descriptive, prescriptive, or mixed):

  • Descriptive (extensional) ones are supposed to be computation independent models (CIMs) and used to support transformations into other descriptive models, e.g analytical or conceptual ones.
  • Prescriptive (intensional) ones target platform specific models (PSMs), their purpose is to support crossed transformations or code generation targeting different platforms.
  • Mixed ones (PIMs) stand in-between and describe platform independent (aka functional) architectures meant to support business processes and be supported by systems platforms.

Models can then be understood as intermediate products to be processed “just-in-time” depending on users’ drive and artifacts’ status.

cccc

Just-in-time processes & Knowledge Based Models: Computation independent (blue), Platform independent (yellow), Platform specific (grey).

With artifacts “inventories” organized along layers, the traceability and transparency of inputs would be set with regard to embedded knowledge: business, organization and supporting systems, and platform technologies. The value of transformations could then be assessed on that basis.

Skills Acquisition: Modular & Smooth Learning Curve

The range of enterprise architecture skills is by nature multi-faceted and volatile:

  • Multi-faceted: Enterprise architects have to deal with the variety of business domains, the singularity of human organizations, and the technicality of systems architectures.
  • Volatile: enterprise architecture is essentially a work in progress whose purpose is to combine changing environments, emerging structures and behaviors, and planned organization.

If they are to tally with such disparate needs, skills are best defined with regard to a limited number of stable characteristics:

  • Target: Enterprise and business oriented, or systems and technology oriented.
  • Purpose: Architectures or business value.
cc

Skills should be primary defined with regard to purpose and target

Given the diversity and transformations of challenges, the relevant skills have to be adjusted, expanded, and deepened continuously; that can only be achieved through a cross-reinforcement of practical and theoretical abilities combined with a modular and smooth learning curve.

Frameworks built from meticulously detailed processes, or sketched from broadly defined principles are ill-fitted to such pedagogy. By contrast, Caminao is built from a small and robust backbone of formally defined concepts that can be fleshed out with enterprise concrete semantics and decorated with customized terminology. That is to enable a step-by-step and open approach to EA.

Multiple Architect Roles: Responsibilities & Decision-making

As already mentioned, the raison d’être of enterprise architecture is to bring under a single roof business processes, enterprise organization, and IT systems. After dealing with criteria related to artifacts and communication, the last to consider is the way EA frameworks should support the integrity and consistency of decision-making.

The Caminao framework define responsibilities of enterprise architects along two dimensions: models and change management.

Regarding models, the dual perspective (actual vs symbolic) remains at the core of EA decision-making: business environments and processes should never be confused with their symbolic representations as systems surrogates. As a matter of fact managing that relationship is at the core of enterprise architecture, and these models are critical for the definition of responsibilities as well as for the support of collaboration. Bluntly speaking, without that distinction enterprise architects would find nothing to manage.

What moves first: actual contexts and processes or enterprise abstractions

EA Decision-making

Regarding change and decision-making, differentiated models will help enterprise architects with the evolution of structures (objectives and assets) and the conduct of operations (processes and configurations), the former shared across business processes and time-frames, the latter set for specific processes and time cycles.

Concluding Remark: EA as Entropy Antidote

The emergence of EA as a discipline is not happening by chance but as a consequence of the crumbling of the traditional boundaries between enterprises and their environment. Faced with the new challenges of competition in seamless digital environments, enterprises success is conditioned by the plasticity and versatility of their architectures, more precisely on their ability to “digest” the variety of data, process it into serviceable information, to be distributed as knowledge towards the different units depending on purposes and time-scales : assets and organization, business value, systems capabilities.

KEA: Knowledge is the Key to EA

KEA: Knowledge as the Key to EA

Along that reasoning EA can be seen as a natural antidote to entropy: like corporate cousins of  Maxwell’s demon, enterprise architects are to stand at enterprise data gates, looking for changes that could decrease internal complexity relative to the external one.

Further Reading

External Links

Models as Parachutes

August 31, 2016

Preamble

The recent crash of Delta Airlines’ reservation system, following a number of similar incidents, have raised new concerns about the reliability of a whole generation of large and critical IT systems.

László Moholy-Nagy-para

Models as Parachutes (László Moholy-Nagy)

Particularly at risk are airlines or banking systems, whose seasoned infrastructures, at the cutting edge when introduced half a century ago, have been strained to their limit by waves of extensive networked new functionalities. Confronted to the magnitude and complexity of overall modernization, most enterprises have preferred piecemeal updates to architectural leaps. Such policies may bring some respite, but they may also turn into aggravating factors, increasing stakes and urgency as well as shortening odds.

Assuming some consensus about stakes, hazards, and options, the priority should be to overcome jumping fears by charting a reassuring perspective in continuity with current situation. For that purpose models may provide heartening parachutes.

Models: Intents & Doubts

Models can serve two kinds of purposes:

  • Describe business contexts according to enterprise objectives, foretell evolution, and simulate policies.
  • Prescribe the architecture of supporting systems and the design of software components.
Business analyst figure maps from territories, software architects create territories from maps

Models Purposes: Describe contexts & concerns, Design supporting systems

Frameworks were supposed to combine the two perspectives, providing a comprehensive and robust basis to systems governance. But if prescriptive models do play a significant role in engineering processes, in particular for code generation, they are seldom fed by their descriptive counterpart.

Broadly speaking, the noncommittal attitudes toward descriptive models comes from a rooted mistrust in non executable models: as far as business analysts and software engineers are concerned, such models can only serve as documentary evidence. And since prescriptive models are by nature grounded to systems’ inner making, there is no secure conceptual apparatus linking systemic changes with their technical consequences. Hence the jumping frights.

Overcoming those frights could be achieved by showing the benefits of secure and soft landings.

Models for Secure Landings

As any tools, models must be assessed with regard to their purpose: prescriptive ones with regard to feasibility and reliability of architectures and design, descriptive ones with regard to correctness and consistency. As already noted, compared to what has been achieved for the former, nothing much has been done about the validity of the latter.

Yet, and contrary to customary beliefs, the rigorous verification of descriptive (aka extensional) models is not a dead-end. Of course these models can never be proven true because there is no finite scope against which they could be checked; but it doesn’t mean that nothing can be done to improve their reliability:

Models must be assessed with regard to their purpose

How to Check for secure landings

  • Correctness: How to verify that all the relevant individuals and features are taken into account. That can only be achieved empirically by building models open to falsification.
  • Consistency: How to verify that the symbolic descriptions (categories and connectors) are complete, coherent and non redundant across models and abstraction levels. That can be formally verified.
  • Alignment: How to verify that current and required business processes are to be seamlessly and effectively supported by systems architectures. That can be managed by introducing a level of indirection, as illustrated by MDA with platform independent models (PIMs) set between computation independent (CIMs) and platform specific (PSMs) ones.

Once established on secure grounds, models can be used to ensure soft landings.

Models for Soft Landings

Set within model based system engineering frameworks, models will help to replace piecemeal applications updates by seamless architectures modernization:

  • Systems: using models shift the focus of change from hardware to software.
  • Enterprise: models help to factor out the role of organization and regulations.
  • Project management: models provide the necessary hinge between agile and phased projects, the former for business driven applications, the latter for architecture oriented ones. Combining both approaches will ensure than lean and just-in-time processes will not be sacrificed to system modernization.
Seamless architectures modernization (a) vs Piecemeal applications updates (b).

Seamless architectures modernization (a) vs Piecemeal applications updates (b).

More generally, and more importantly, models are the option of choice (if not the only one) for enterprise knowledge management:

  • Business: Computation independent models (CIMs), employed to trace, justify and rationalize business strategies and processes portfolios.
  • Systems: Platform specific models (PSMs), employed to trace, justify and rationalize technical alternatives and decisions.
  • Decision-making and learning: Platform independent models (PIMs), employed to align business and systems and support enterprise architecture governance.

And knowledge management is arguably the primary factor for successful comprehensive modernization.

Strategic Decision-making: Cash or Crash

Governance is all about risks and decision-making, but investing on truly fail-safe systems for airlines or air traffic control can be likened to a short bet on the Armageddon, and that cannot be easily framed in a neat cost-benefit analysis. But that may be the very nature of strategic decision-making: not amenable to ROI but aiming at risks assessment and the development of the policies apt to contain and manage them. That would be impossible without models.

Further Reading

Business Stories: Stakeholders’ Plots & Users’ Narratives

July 4, 2016

Preamble

As Aristotle noted some time ago, plots are the backbone of any story as they uphold the causal sequence of events and actions: they provide the “why” of what happens, compared to narratives, which tell “how” what happened is being told.

cccc

Only shadows will tell: as far as stories are concerned, possibilities remain unknown until their realization.

So, in principle, plots deal with possibilities and narratives with realizations. But in fact plots remain unknown until being narrated; in other words fictions are like Schrödinger’s cat: there is no way to set possibilities and realizations apart.

That literary conundrum may convey some useful clues for business analysis, with stakeholders objectives seen as plots, and users’ stories as narratives.

Stakeholders’ Plots vs Users’ Narratives

With regard to the functionalities of supporting systems, a key issue for business analysts is to accommodate specific and short-lived opportunities identified by business units with broader and long-standing objectives defined at corporate level.

Assuming a fictional view of business expectations, that issue can be charted in terms of plots and narratives:

  • Business objectives (as plots) are meant to apply continuously and consistently to different agents, different concerns, and different contexts. As such they are best defined as rules and constraints (declarative schemes).
  • Users’ stories (as narratives) are supposed to translate as soon as possible into business transactions. As such they are best defined as sequences of operations governed by users’ choices (procedural schemes).

Then, just like narratives are meant to carry out the plots, users’ stories are supposed to follow the paths set by business objectives. But if confusion is to be avoided between strategic orientations, regulatory directives, and opportunist moves, the walk of business objectives and the talk of users’ stories should be termed differently.

Business Objectives (Plots): Symbolic & Allochronic

The definition of business objectives has to find its terms between the Charybdis of abstractions and the Scylla of specific business processes, the former to be avoided because they are by nature detached from reality and only make sense with regard to models, the latter because they would be too specific and restrictive. In-between, business objectives would be best defined through:

  • Strategic and financial objectives expressed using symbolic categories applied to environments, products, and resources.
  • Modal time-frames identified in reference to events and qualified by assumptions with regard to symbolic categories.
  • Business functions to be optimized given a set of constraints.

These could be comprehensively and consistently expressed with declarative languages.

Users’ Stories (Narratives): Actual & Contemporaneous

Users’ stories are at their best when tied to specific circumstances and purposes without being led away by modeling concerns. As narratives they should stick to agents, triggering events, and scripted sequences of options, operations, and outcomes:

  • Compared to the symbolic categories used for business objectives, users stories should refer to actual subsets of objects and events defined on contexts.
  • Contrary to the modal time-frames of business objectives, the scripts of users’ stories must be fully timed with regard to their triggering events.

That can only be expressed as procedures.

From Fiction to Artifacts: Aligning Business Objectives & Enterprise Architectures

Likening business analysis to its distant literary kin goes beyond the metaphor as it points to a practical organization of business objectives and users’ stories.

And the benefits of the distinction between declarative (for business plots) and procedural (for users’ narratives) blueprints is not limited to business analysis but can be extended to systems architecture (as plots) and software design (as narratives). On that basis declarative schemes could be applied to business functions and architectures capabilities, and procedural ones to users’ stories (or use cases) and software design.

XBredModels_PlotsNarrs

On a broader perspective such a fictional approach may help to align enterprise architectures to business objectives.

Further Reading

External Links

Conceptual Models & Abstraction Scales

March 22, 2016

Following the recent publication of a new standard for conceptual modeling of automation systems (Object-Process Methodology (ISO/PAS 19450:2015) it may be interesting to explore how it relates to abstraction and meta-models.

oskar-schlemmer-at-bahaus

Meta-models are drawn along lean abstraction scales (Oskar Schlemmer )

Models & Meta Models

Just like models are meant to describe sets of actual instances, meta-models are meant to do the same for sets of modeling artifacts independently of their targets. Along that reasoning, conceptual modeling of automation systems could be achieved either with a single language covering all aspects, or with a meta-language dealing with different sets of models, e.g MDA’s computation independent, platform independent, and platform specific models.

Modeling Languages covering technical, functional, and business concerns.

Two alternative options for the modeling of automation systems: unified language, or a meta language covering technical (e.g PSMs), functional (e.g PIMs), and business (e.g CIMs) scopes.

Given a model based engineering framework (e.g MDA), meta-models are generally used to support downstream models transformation targeting designs and code. But when upstream conceptual models are concerned, the challenge is to tackle the knowledge-to-systems transition. For that purpose some shared modeling roof is required for the definition of the symbolic footprint of the targeted business in the automation system under consideration.

Symbolic Footprint

Given that automation systems are meant to manage symbolic objects (aka surrogates), one should expect the distinction between actual instances and their symbolic representations to be the cornerstone of corresponding modeling languages. Along that reasoning, modeling of automation systems should start with the symbolic representation of actual business footprints, namely: the sets of objects, events, and processes, the roles played by agents (aka active objects), and the description of the associated states and rules. Containers would be added for the management of collections.

Automation systems modeling begins with the symbolic representation of actual instances

Automation systems modeling begins with the symbolic representation by systems of actual instances of business related objects and phenomena.

Next, as illustrated by the Object/Agent hierarchy, business worlds are not flat but built from sundry structures and facets to be represented by multiple levels of descriptions. That’s where abstractions are to be introduced.

Abstraction & Variants

The purpose of abstractions is to manage variants, and as such they can be used in two ways:

  • For partial descriptions of actual instances depending on targeted features. That can be achieved using composition (for structural variants) and partitions (for functional ones).
  • As hierarchies of symbolic descriptions (aka types and sub-types) subsuming variants identified at instances level.

On that basis the challenge is to find the level of detail (targeted actual instances) and abstraction (symbolic footprint) that will best describe supporting systems functionalities. Such level will have to meet two conditions:

  1. A minimal number of comprehensive and exclusive categories covering the structural variants of the sets of instances to be uniformly, consistently, and continuously identified by both enterprise and supporting systems.
  2. A consistent but adjustable set of types and sub-types anchored to the core structural categories and covering the functional variants .

Climbing up and down abstraction ladders looking for right levels is arguably the critical part of conceptual modeling, but the search will greatly benefit from the distinction between models and meta-models. Assuming meta-models are meant to ignore domain specific features altogether, they introduce a qualitative gap on abstraction scales as the respective hierarchies of models and meta-models are targeting different kind of instances. The modeling of agents and roles epitomizes the benefits of that distinction.

Abstraction & Meta Models

Taking customers for example, a naive approach would use Customer as a modeling type inheriting from a super-type, e.g Party. But then, if parties are to be uniformly identified (#), that would preclude any agent for playing multiple roles, e.g customer and supplier.

A separate description of parties and roles would clearly be a better option as it would unify the identification of the former without introducing unwarranted constraints on the latter which would then be defined and identified as the realization of a relationship played by a party.

Not surprisingly, that distinction would also be congruent with the one between models and meta-model:

  • Meta-models will describe generic aspects independently of domain-specific considerations, in particular organizational context (units and roles) and interactions with systems (a).
  • Models will define StaffSupplier and Customer according to the semantics of the business considered (b).
Composition, partitions and specialization can be used to detail the symbolic footprint

Composition, partitions and specialization can be used along two different abstraction scales.

That distinction between abstraction scales can also be applied to the conceptual modeling of automation systems.

Abstraction Scales & Conceptual Models

To begin with definitions, conceptual representations could be used for all mental constructs, whereas symbolic representations would be used only for the subset earmarked for communication purposes. That would mean that, contrary to conceptual representations that can be detached of business and enterprise practicalities, symbolic representations are necessarily built on design, and should be assessed accordingly. In our case the aim of such representations would be to describe the exchanges between business processes and supporting systems.

That understanding neatly fits the conceptual modeling of automation systems whose purpose would be to consolidate generic and business specific abstraction scales, the former for symbolic representations of the exchanges between business and systems, the latter symbolic representation of business contents.

At this point it must be noted that the scales are not necessarily aligned in continuity (with meta-models’ being higher and models’ being lower) as their respective ontologies may overlap (Organizational Entity and Party) or cross (Function and Role).

Toward a System Modeling Ontology

Along an analytic perspective, ontologies are meant to determine the categories that can comprehensively and consistently denote the instances of a domain under consideration. With regard to the modeling of automation systems, a relevant ontology would map a subset of semantic categories (for conceptual representations) to functional ones (for systems symbolic representations).

Further Reading

External Links

Agile Collaboration & Social Creativity

February 22, 2016

Open-plan offices and social networks are often seen as significant factors of collaboration and innovation, breeding and nurturing the creativity of knowledge workers, weaving their ideas into webs of truths, and molding their minds into some collective intelligence.

Brains need some breathing space

Open-plan offices, collaboration, and knowledge workers creativity

Yet, as creativity comes with agility, knowledge workflows should give brains enough breathing space lest they get more pressure than pasture.

Collaboration & Thinking Flows

Collaboration is a means to an end. To be of any use exchanges have to be fed with renewed ideas and assumptions, triggering arguments and adjustments, and opening new perspectives. If not they may burn themselves out with hollow considerations blurring clues and expectations, clogging the channels, and finally stemming the thinking flows.

Taking example from lean manufacturing, the first objective should be to streamline knowledge workflows as to eliminate swirling pools of squabbles, drain stagnant puddles of stale thoughts, and gear collaboration to flowing knowledge streams. As illustrated by flood irrigation, the first step is to identify basin levels.

Dunbar Numbers & Collaboration Basins

Studying the grooming habits of social primates, psychologist Robin Dunbar came to the conclusion that the size of social circles that individuals of a living species can maintain is set by the size of brain’s neocortex. Further studies have confirmed Dunbar’s findings, with the corresponding sizes for humans set around 10 for trusted personal groups and 150 for untried social ones. As it happens, and not by chance, those numbers seem to coincide with actual observations: the former for personal and direct collaboration, the latter for social and mediated collaboration.

Based on that understanding, the objective would be to organize knowledge workflows across two primary basins:

  • On-site and face-to-face collaboration with trusted co-workers. Corresponding interactions would be driven by personal dispositions and attitudes.
  • On-line and networked collaboration with workers, trusted or otherwise. Corresponding interactions would be based on shared interests and past exchanges.

Knowledge Workflows

The aim of knowledge workflows is to process data into information and put it to use. That is to be achieved by combining different kinds of tasks, in particular:

  • Data and information management: build the symbolic descriptions of contexts, concerns, and means.
  • Objectives management: based on a set of symbolic descriptions, identify and refine opportunities together with the ways to realize them.
  • Tasks management: allocate rights and responsibilities across organizations and collaboration frames, public and shallow or personal and deep.
  • Flows management: monitor and manage actual flows, publish arguments and propositions, consolidate decisions, …

Taking into account constraints and dependencies between the tasks, the aims would be to balance creativity and automation while eliminating superfluous intermediate products (like documents or models) or activities (e.g unfocused meetings).

With regard to dependencies, KM tasks are often intertwined and cannot be carried out sequentially; moreover, as illustrated by the impact of “creative accounting” on accounted activities, their overlapping is not frozen but subject to feedback, changes and adjustments.

With regard to automation, three groups are to be considered: the first requires only raw processing power and can be fully automated; the second also involves some intelligence that may be provided by smart systems; and the third calls for decision-making that can only be done by human agents entitled by the organization.

At first sight some lessons could be drawn from lean manufacturing, yet, since knowledge processes are not subject to hardware constraints, agile approaches should provide a more informative reference.

Iterative Knowledge Processing

A simple preliminary step is to check the applicability of agile principles by replacing “software” by “knowledge”. Assuming that ground is secured, the core undertaking is to consider what would become of cycles and iterations when applied to knowledge processing:

  • Cycle invariants: tasks would be iterated on given sets of symbolic descriptions applied to the state of affairs (contexts, concerns, and means).
  • Iterations content: based on those descriptions data would be processed into information, changes would be monitored, and possibilities explored.
  • Exit condition: cycles would complete with decisions committing changes in the state of affairs that would also entail adjustments or changes in symbolic descriptions.

That scheme meets three of the basic tenets of the agile paradigm, i.e open scope (unknowns cannot be set in advance), continuity of delivery (invariants are defined and managed by knowledge workers), and users in driving seats (through exit conditions). Yet it still doesn’t deal with creativity and the benefits of collaboration for knowledge workers.

Thinking Space & Pace

The scope of creativity in processes is neatly circumscribed by the nature of flows, i.e the possibility to insert knowledge during the processing: external for material flows (e.g in manufacturing), internal for symbolic flows (e.g in software engineering and knowledge processing).

Yet, whereas both software engineering and knowledge processes come with some built-in capability to redefined their symbolic flows on-the-fly, they don’t grant the same room to creativity. Contrary to software engineering projects which have to close their perspectives on the delivery of working products, knowledge processes are meant to keep them open to new understandings and opportunities. For the former creativity is the means to an end, for the latter it’s the end in itself, with collaboration as means.

Such opposite perspectives have direct consequences for two basic agile collaboration mechanisms: backlog and time-boxing:

  • Backlogs are used to structure and manage the space under exploration. But contrary to software processes whose space is focused and structured by users’ needs, knowledge processes are supposed to play on workers’ creativity to expand and redefine the range under consideration.
  • Time-boxes are used to synchronize tasks. But with creativity entering the fray, neither space granularity or thinking pace can be set in advance and coerced into single-sized boxes. In that case individuals must remain in full control of the contents and stride of their thinking streams.

It ensues that when creativity is the primary success factor standard agile collaboration mechanisms are falling short and intelligent collaboration schemes are to be introduced.

Creativity & Collaboration Tiers

The synchronization of creative activities has to deal with conflicting objectives:

  • On one hand the mental maps of knowledge workers and the stream of their thoughts have to be dynamically aligned.
  • On the other hand unsolicited face-to-face interactions or instant communications may significantly impair the course of creative thinking.

When activities, e.g software engineering, can be streamlined towards the delivery of clearly defined outcomes, backlogs and time-boxes can be used to harness workers’ creativity. When that’s not the case more sophisticated collaboration mechanisms are needed.

Assuming that mediated collaboration has a limited impact on thinking creativity (emails don’t have to be answered, or even presented, instantly), the objective is to steer knowledge workflows across a two-tiered collaboration framework: one personal and direct between knowledge workers, the other social and mediated through enterprise or institutional networks.

On the first tier knowledge workers would manage their thinking flows (content and tempo) independently, initiating or accepting personal collaboration (either through physical contact or some kind of instant messaging) depending on their respective “state of mind”.

The second tier would be for social collaboration and would be expected to replace backlogs and time-boxing. Proceeding from the first to the second tier would be conditioned by workers’ needs and expectations, triggered on their own initiative or following prompts.

From Personal to Collective Thinking

The challenging issue is obviously to define and implement the mechanisms governing the exchanges between collaboration tiers, e.g:

  • How to keep tabs on topics and contents to be safeguarded.
  • How to mediate (i.e filter and time) the solicitations and contribution issued by the social tier.
  • How to assess the solicitations and contribution issued by individuals.
  • How to assess and manage knowledge deemed to remain proprietary.
  • How to identify and manage knowledge workers personal and social circles.

Whereas such issues are customary tackled by various AI systems (knowledge management, decision-making, multi-players games, etc), taken as a whole they bring up the question of the relationship between personal and collective thinking, and as a corollary, the role of organization in nurturing corporate innovation.

Further Readings