Archive for the ‘Business Analysis’ Category

Business Agility & the OODA Loop

November 21, 2016

Preamble

The OOAD (Observation, Orientation, Decision, Action) loop is a real-time decision-making paradigm developed in the sixties by Colonel John Boyd from his experience as fighter pilot and military strategist.

(Moholy Nagy)

How to get inside opponent’s loop (Lazlo Moholy-Nagy)

The relevancy of OODA for today’s operational decision-making comes from the seamless integration of IT systems with business operations and the resulting merits of agile development processes.

Business: End of Discrete Time-Frames

Business governance was used to be phased: analyze the market, select opportunities, build capabilities, launch operations. No more. With the melting of the fences between actual and symbolic realms, periodic transitional events have lost most of their relevancy. Deprived of discrete and robust time-frames, the weaving of observed facts with business plans has to be managed on the fly. Success now comes from continuous readiness, quicker tempo, and the ability to operate inside adversaries’ time-scales, for defense (force competitor out of favorable position) as well as offense (get a competitive edge). Hence the reference to dogfights.

Dogfights & Agile Primacy

John Boyd train of thoughts started with the observation that, despite the apparent superiority of the soviet Mig 15 on US F-86 during the Korea war, US fighters stood their ground. From that factual observation it took Boyd’s comprehensive engineering work to demonstrate that as far as dogfights were concerned fast transients between maneuvers (aka agility) was more important than technical capabilities. Pushed up Pentagon’s reluctant ladders by Boyd’s sturdy determination, that conclusion have had wide-ranging consequences in the design of USAF fighters and pilots formation for the following generations. Its influence also spread to management, even if theories’ turnover is much faster there, and shelf-life much shorter.

Nowadays, with the accelerated integration of business processes with IT systems, agility is making a comeback from the software engineering corner. Reflecting business and IT convergence, principles like iterative development, just-in-time delivery, and lean processes, all epitomized by the agile software development model, are progressively mingling into business practices with strong resemblances to dogfights; and the resemblances are not only symbolic.

IT Systems & Business Competition

While some similarities between dogfights and business competition may seem metaphorical, one critical aspect is all too real, namely the increasing importance of supporting machines, IT systems or fighter jets.

Basically, IT systems, like fighters’ electronics, are tasked to observe environments, analyse changes in relation to position and objectives, and support decision-making. But today’s systems go further with two qualitative leaps:

  • The seamless integration of physical and symbolic flows let systems manage some overlapping between supporting decisions and carrying out actions.
  • Due to their artificial intelligence capabilities, systems can learn on-the-job and improve their performances in real-time feedback loops.

When combined, these two trends have drastic impact on the way machines can support human activities in real-time competitive situations. More to the point, they bring new light on business agility.

Business Agility

As illustrated by the radical transformation of fighter cockpits, the merging of analog and digital flows leaves little room for human mediation: data must be processed into information and presented instantly along two critical dimensions, one for decision-making, the other for information life-cycle:

  • Man/Machine interfaces have to materialize the merging of actual and symbolic realms as to support just-in-time decision-making.
  • The replacement of phased selected updates of environment data by continuous changes in raw and massive data means that the status of information has to be incorporated with the information itself, yet without impairing decision-making.

Beyond obvious differences between dogfights and business competition, that double exigence is to characterize business agility:

  1. Instant understanding of changes in business opportunities (Observation) .
  2. Simultaneous assessment of the reliability and shelf-life of pertaining information with regard to current positions and operations (Orientation).
  3. Weighting of options with regard to enterprise capabilities and broader objectives (Decision).
  4. Carrying out of decisions within the relevant time-span (Action).

That understanding of business agility is to be compared with its development and architecture cousins. Yet it doesn’t seem to add much to data analytics and operational decision-making. That is until the concept of orientation is reassessed.

Agility & Orientation: Task vs Tack

To begin with basics, the concept of Orientation comes with a twofold meaning, actual and symbolic:

  • Actual: a position with regard to external (e.g spacial) coordinates, possibly qualified with abilities to observe, move, or act.
  • Symbolic: a position with regard to internal (e.g beliefs or aims) references, possibly mixed with known or presumed orientation of other agents, opponents or associates.

When business is considered, data analytics is supposed to deal comprehensively and accurately with markets’ actual orientations. But the symbolic facet is left largely unexplored.

Boyd’s contribution is to bring together both aspects and combine them into actual practice, namely how to foretell the tack of your opponents from their actual tracks as well as their surmised plans, while fooling them about your own moves, actual or planned.

Such ambitions once out of reach, can now be fulfilled due to the combination of big data, artificial intelligence, and the exponential growth on computing power.

Further Readings

 

Business Problems shouldn’t sleep with IT Solutions

October 8, 2016

Preamble

The often mentioned distinction between problem and solution levels may make sense from an analyst’s particular point of view, whether business or system.  But blending problems and solutions independently of their nature becomes a serious over simplification for enterprise architects considering that one of their prime responsibility is to keep apart business problems from IT solutions.

(Mircea Cantor)

Functional problem with technical solution (Mircea Cantor)

That issue is relevant from engineering as well as business perspective.

Engineering View: Problem Levels & Architecture Layers

As long as computers are used to solve problems the only concern is to find the best solution, and the only architecture of concern is software’s.

But enterprise architects have to deal with systems, not computers, namely how to best serve business objectives with corporate resources, across business units and along business cycles. For that purpose resources (financial, human, technical) and their use are to be layered according to the nature of problems and solutions: business processes (enterprise), supporting functionalities (systems), and technologies (platforms).

From an engineering perspective, the intended congruence between problems levels and architecture layers can be illustrated with the OMG’s model driven architecture (MDA) framework:

  • Computation independent models (CIMs) deal with business processes solutions, to be translated into functional problems for supporting systems.
  • Platform independent models (PIMs) deal with functional solutions, to be translated into technical problems for supporting platforms.
  • Platform specific models (PSMs) deal with technical solutions, to be implemented as code.
MDA layers correspond to a clear hierarchy of problems and solutions

MDA layers can be mapped to a clear hierarchy of problems and solutions

Along that understanding, architectures can be seen as solutions, and the primary responsibility of enterprise architects is to see that problems/solutions brace remain in their respective swim-lanes.

Business View: Business Value & Enterprise Assets

Whereas the engineering perspective may appear technical or specific to a model based approach, the same issue is all the more significant when expressed with regard to business concerns and corporate governance. In that case the critical distinction is between business value and assets:

  • Business value: Problems are set by business opportunities, and solutions by processes and applications. The critical factor is reactivity and time-to-market.
  • Assets: Problems are set by business objectives and strategy, and solutions are to be supported by organization and systems capabilities. The critical factor is reuse and ROI.
Decision-making must distinguish between business opportunities and enterprise governance

Decision-making must distinguish between business opportunities and enterprise governance

If opportunities are to be seized and operations managed on the fly  yet tally with strategic decisions, respective problems and solutions should be kept apart. Juggling with their dynamic alignment is at the core of enterprise architects’ job description.

Enterprise Architects & Governance

Engineering and business perspectives are not to be seen as the terms of an alternative to be picked by enterprise architects. As a matter of fact they must be crossed and governance policies selected depending on the point of view:

  • Looking at EA from an engineering perspective,  the business one will focus on systems governance and assets management as epitomized by model based systems engineering schemes.
  • Looking at EA from a business perspective, the engineering one will focus on lean and just-in-time solutions, as epitomized by agile development models.

As far as governance of large and complex corporate entities, supposedly EA’s primary target, must deal with tactical, operational, and strategic concerns, the nexus between business and engineering perspectives is where enterprise architects are to stand.

 

 

Focus: Business Processes & Abstraction

July 16, 2016

Preamble

Abstractions, and corollary inheritance, are primarily understood with objects. Yet, since business processes are meant to focus on activities, semantics may have to be refined when abstraction and inheritance are directly used for behaviors.

enrique_gimenez-velilla

How to apply abstraction to processes ?  (E. Gimenez Velilla)

Considering that the primary purpose of abstractions is to tackle business variants with regard to supporting systems, their representation with use cases provides a good starting point.

Business Variants: Use case’s <extend> & <include>

Taking use cases as a modeling nexus between business and systems realms, <extend> and <include> appear as the default candidates for the initial description of behaviors’ specialization and generalization.

  • <include>: to be compared to composition semantics, with the included behaviors performed  by instances identified (#) by the owner UC (a).
  • <extend>: to be compared to aggregation semantics, with the extending behaviors performed  by separate instances with reference to the owner ones (b).
Included UCs are meant to be triggered by owners (a); that cannot be clearly established for abstract use cases and generalization (c).

Included UCs are meant to be triggered by owners (a); that cannot be clearly established for abstract use cases and generalization (c).

Abstract use cases and generalization have also been mentioned by UML before being curiously overlooked in following versions. Since none has been explicitly discarded, some confusion remains about hypothetical semantics. Notionally, abstract UCs would represent behaviors never to be performed on their own (c). Compared to inclusion, used for variants of operations along execution paths, abstract use cases would describe the generic mechanisms to be applied to triggering events at UC inception independently of actual business operations carried out along execution paths.

Nonetheless, and more importantly, the mix-up surrounding the generalization of use cases points to a critical fault-line running under UML concepts: since both use cases and classes are defined as qualifiers, they are supposed to be similarly subject to generalization and specialization. That is misguided because use cases describe the business behaviors to be supported by systems, not to be confused with the software components that will do the job. The mapping between the former and the latter is to be set by design, and there is no reason to assume a full and direct correspondence between functional requirements and functional architecture.

Use Cases Distilled

As far as use cases are considered, mapping business behaviors to supporting systems functionalities can be carried out at two levels:

  • Objects: UCs being identified by triggering agents, events, and goals, they are to be matched with corresponding users interfaces and controllers, the former for the description of I/O flows, the latter for the continuity and integrity of interactions.
  • Methods: As it’s safe to assume that use cases are underpinned by shared business functions and system features, a significant part of their operations are to be realized by methods of shared business entities or services.
vv

Setting apart UIs and controllers, no direct mapping should be assumed between use cases and functional qualifiers.

The business variants distilled into objects’ or services’ methods can be generalized and specialized according to OOD principles; and the same principles can be applied to specific users’ interfaces. But since purely behavioral aspects of UCs can neither be distilled into objects’ methods, nor directly translated into controller objects, their abstraction semantics have to be reconsidered.

Inheritance Semantics: Structural vs Functional

As far as software artifacts are concerned, abstraction semantics are set by programming languages, and while they may differ, the object-oriented (OO) paradigm provides some good enough consolidation. Along that perspective, inheritance emerges as a critical issue due to its direct impact on the validity of programs.

Generally speaking, inheritance describes how structural or behavioral traits are passed from ancestors to descendants, either at individual or type level. OO design is more specific and puts the focus on the intrinsic features (attributes and operations) supported by types or classes, which ensues that behaviors are not considered as such but through the objects’ methods that realize them:

  • Structural inheritance deals with attributes and operations set for the whole life-cycle of instances. As a consequence corresponding inheritance is bound to identities (#) and multiple ascendants (i.e identities) are ruled out.
  • Functional inheritance deal with objects behaviors which may or may not be frozen to whole life-cycles. Features can therefore be inherited from multiple ascendants.

That structural vs functional distinction matches the one between composition and aggregation used to characterize the links between objects and parts which, as noted above, can also be applied to uses cases.

Use Cases & Abstraction

Assuming that the structural/functional distinction defined for objects can also be applied to behaviors, use cases provide a modeling path from variants in business processes to OOD of controllers:

  • Behaviors included by UCs (a) are to be set along the execution paths triggered by UC primary events (#). Inheritance is structural, from UCs base controllers to corresponding (local) ones, and covers features (e.g views on business objects) and associated states (e.g authorizations) defined by use case triggering circumstances.
  • Behaviors extending UCs (b) are triggered by secondary events generated along execution paths. Inheritance is functional, from extending UCs (e.g text messaging) to UCs primary controllers.

Yet this dual scheme may not be fully satisfactory as it suffers from two limitations:

  • It only considers the relationships between UCs, not with the characteristics of the use cases themselves.
  • It ignores the critical difference between the variants of business logic and the variants of triggering conditions.

Both flaws can be patched up if abstract use cases are specifically introduced to factor out triggering circumstances (c):

Use cases provide a principled modeling path from variants in business processes to the OOD of corresponding controllers.

Use cases provide a principled modeling path from variants in business processes to the OOD of corresponding controllers.

  • Undefined triggering circumstances is the only way to characterize abstraction independently of what happens along execution paths.
  • Abstract use cases can then be used to specify inception mechanisms to be inherited by concrete use cases.

That understanding of abstract use cases comes with clear benefits with regard to security and confidentiality.

What is at Stake

Factoring out authentication and authorization epitomizes the benefits of abstract UCs:

  • Concrete schemes with included UC will give access to all registered users with the particulars of managers or customers checked later (a).
  • Alternatively, abstract schemes will use inheritance of inception mechanisms in order to explicitly prevent separate access (c).
  • Applying <include> with abstract UC should be ruled out because it would make room for the execution of operations with undefined triggering circumstances.
Interactions can only be triggered by concrete actors.

Interactions can only be triggered by concrete actors.

As a conclusion, by enabling a clear distinction between business logic and operational circumstances, abstraction can reinforce the security of functional architectures.

Further Reading

 

Business Stories: Stakeholders’ Plots & Users’ Narratives

July 4, 2016

Preamble

As Aristotle noted some time ago, plots are the backbone of any story as they uphold the causal sequence of events and actions: they provide the “why” of what happens, compared to narratives, which tell “how” what happened is being told.

cccc

Only shadows will tell: as far as stories are concerned, possibilities remain unknown until their realization.

So, in principle, plots deal with possibilities and narratives with realizations. But in fact plots remain unknown until being narrated; in other words fictions are like Schrödinger’s cat: there is no way to set possibilities and realizations apart.

That literary conundrum may convey some useful clues for business analysis, with stakeholders objectives seen as plots, and users’ stories as narratives.

Stakeholders’ Plots vs Users’ Narratives

With regard to the functionalities of supporting systems, a key issue for business analysts is to accommodate specific and short-lived opportunities identified by business units with broader and long-standing objectives defined at corporate level.

Assuming a fictional view of business expectations, that issue can be charted in terms of plots and narratives:

  • Business objectives (as plots) are meant to apply continuously and consistently to different agents, different concerns, and different contexts. As such they are best defined as rules and constraints (declarative schemes).
  • Users’ stories (as narratives) are supposed to translate as soon as possible into business transactions. As such they are best defined as sequences of operations governed by users’ choices (procedural schemes).

Then, just like narratives are meant to carry out the plots, users’ stories are supposed to follow the paths set by business objectives. But if confusion is to be avoided between strategic orientations, regulatory directives, and opportunist moves, the walk of business objectives and the talk of users’ stories should be termed differently.

Business Objectives (Plots): Symbolic & Allochronic

The definition of business objectives has to find its terms between the Charybdis of abstractions and the Scylla of specific business processes, the former to be avoided because they are by nature detached from reality and only make sense with regard to models, the latter because they would be too specific and restrictive. In-between, business objectives would be best defined through:

  • Strategic and financial objectives expressed using symbolic categories applied to environments, products, and resources.
  • Modal time-frames identified in reference to events and qualified by assumptions with regard to symbolic categories.
  • Business functions to be optimized given a set of constraints.

These could be comprehensively and consistently expressed with declarative languages.

Users’ Stories (Narratives): Actual & Contemporaneous

Users’ stories are at their best when tied to specific circumstances and purposes without being led away by modeling concerns. As narratives they should stick to agents, triggering events, and scripted sequences of options, operations, and outcomes:

  • Compared to the symbolic categories used for business objectives, users stories should refer to actual subsets of objects and events defined on contexts.
  • Contrary to the modal time-frames of business objectives, the scripts of users’ stories must be fully timed with regard to their triggering events.

That can only be expressed as procedures.

From Fiction to Artifacts: Aligning Business Objectives & Enterprise Architectures

Likening business analysis to its distant literary kin goes beyond the metaphor as it points to a practical organization of business objectives and users’ stories.

And the benefits of the distinction between declarative (for business plots) and procedural (for users’ narratives) blueprints is not limited to business analysis but can be extended to systems architecture (as plots) and software design (as narratives). On that basis declarative schemes could be applied to business functions and architectures capabilities, and procedural ones to users’ stories (or use cases) and software design.

XBredModels_PlotsNarrs

On a broader perspective such a fictional approach may help to align enterprise architectures to business objectives.

Further Reading

External Links

Agile Business Analysis: From Wonders to Logic

March 7, 2016

Time and again new recruits will ask about the role of business analysts. Considering that such a question is seldom heard from software engineers, are BAs more curious about their job, or are they standing on more tentative grounds ? If that’s the case agility would help them to flip-flop between business quicksands to systems hard rocks.

vvv

How to make sense of business wonders (Hieronymus Bosch)

Holding the fort vs scouting outskirts

Systems architects and software engineers may have to meet esoteric business requirements, but their responsibility is first and foremost to guarantee the functional and economic sustainability of systems. On that account they are given licence to build solid walls and secure gateways, and to enforce their own languages and rules upon well vetted parties.

Business analysts don’t get such a free hand: while being straitened by software engineers constructs and constraints, their primary undertaking is to explore business wilds, reconnoitre competitors, trace new tracks, and learn the dialects of any nicknamed natives ready to trade.

No wonder the qualms of new business analysts.

Great businesses make their own rules

The best rules in business are the ones still unbeknownst, as success is most often brought by disruptive initiatives taking advantage of previously undiscovered opportunities. It ensues that at its core, BAs’ job description is to relentlessly look across the frontier for still uncharted businesses, and bring them back to the digitized world of shipshape business domains and processes.

For that purpose BAs will have to juggle with the fuzzy idiosyncrasies of new business openings until they can be aligned with the functionalities of “legacy” systems.

BA’s Agility

While usually presented as a software engineering hallmark, agility may be equally useful for business analysts as they have to balance two crossing perspectives:

  • Analysis: sorting detailed activities into business processes.
  • Synthesis: factoring out business functions and mapping them to systems capabilities.

That could be a challenging achievement if carried out sequentially: crossing back and forth between changing scope and steady capabilities could generate unsettling alternatives and unbounded complexity.

The agile development model is meant to tackle the difficulties through iterations and collaboration without being too specific about the kind of agility required from business analysts and software engineers.

Yet the apparent symmetry between the parties may be misleading: whereas software engineers don’t have (and shouldn’t even try) to second guess business analysts, business analysts shouldn’t forget that at the end of the day business expectations, however exotic or esoteric, will have to feed very conformist logical beasts.

Further Readings

Operational Intelligence & Decision Making

January 18, 2016

Preamble

According to a leading tools provider operational intelligence (OI) is the ability to “discover and analyze relationships between business events and corresponding IT events”.

(Gilles Barbier)

Minding streams of big data things (Gilles Barbier)

From a marketing perspective, the moniker suggests some kind of cross-breeding between operational research, artificial intelligence, and real-time analytics. Yet, behind vendor dressing, problems and policies remain the ones traditionally dealt with by decision-making and knowledge management, and as far as marketing is concerned, pitches will hardly affect the assessment of field professionals.

Nevertheless, functional pitches may have a deeper influence if they try to outline the aims of operational intelligence to the people directly involved, affecting the way problems are understood and dealt with. That may be the case if business and system events are seemed to be put on a par: overlooking the directed dependency between actual events and their systems counterparts can critically hamper the very capabilities of systems decision-making.

Facts, Data, & Information

The new connected world of human brains and smart things have scaled down space and time by orders of magnitude, up to the point that events seem to come out as soon as they happen, wherever that may be. Facts and updates, that once were incoming as discrete and manageable batches of information, are now bursting continuously and massively as seamless streams of data that have to be processed on-the-fly into information lest they be cannibalized by ambient noise. That new configuration blurs the distinction between operational data (pushed, shallow, transient) and underlying information (pulled, deep, persistent), making it unworkable, if not meaningless altogether.

Taking inventories decisions as an example, traditional schemes rely on periodic readings of actual inventories and sales crossed with market foresight. Now, with on-line sales and the internet of things, real-time data can be used to build on-the-fly indicators whose biases and inaccuracy would be dynamically readjusted on the basis of information built on hindsight. At any given time (t), decision-makers will be presented with actual observations (a),  initial estimations of previous observations (b1, b2), and revised estimations of previous observations (c).

DataInfoKnow_OpIntel0

At any given time (t), decision-makers are presented with actual observations (a), initial estimations of previous observations (b1, b2), and revised estimations of previous observations (c).

Set along this framework, the debate about big data can be misleading as it puts the focus on the quantity of data feeding the processes, overlooking the process itself and the distinction between data, information, and knowledge.

Information, Knowledge, & Decision-making

Generally speaking, the distinction between data and information can be set with reference to time and context, data being instant and standalone, and information associated to a shelf life and domain. With regard to decision-making, it would mean that data can be directly used within the context of the current activities and circumstances; e.g, whereas on-line sales data may (or may not) be directly (i.e despite inaccuracies and biases) used to allocate inventories across depots, it has to be “mined” into consolidated information before being used in the broader perspective of inventories planning.

Compared to the transition between data and information, which is carried out by adding time and context, the one between information and knowledge is best understood in terms of decision-making.

Information is obtained by anchoring data to time-frames and contexts, knowledge is acquired by putting information to use.

Information is obtained by anchoring data to time-frames and contexts, knowledge is acquired by putting information to use.

Decisions are best defined as commitments set against some unknown circumstances: somebody, somewhere, or sometime. First, it ensues that decision-making calls for specific and timed information that has to be maintained up-to-date until decisions are taken. Then, taking decisions introduces some irreversible change in the state of affairs or expectations, making potentially obsolete all relevant information. So it may be argued that decisions is what transform information into knowledge.

Operational Intelligence: Objectives & Tools

Assuming decisions mark the nexus between information and knowledge, operational intelligence could be defined as the ability to put information to use, that ability being supported by the analysis of the relationships between business events and corresponding IT events.

Far from being academic, that distinction is essentially pragmatic as it marks the boundary between OI objectives and tools capabilities:

  • The aim of OI is to make sense (and profit) from the dynamic relationship between business (aka external) events on one hand, business objectives and enterprise capabilities on the other hand.
  • The role of supporting tools is to define and manage IT (aka internal) events used to reflect external ones and analyze them.
Whereas business events (red) represent change in the state of affairs, IT events (blue) only represent changes in associated information.

Whereas business events (red) represent change in the state of affairs, IT events (blue) only represent changes in associated information.

Since IT events are artifacts built on purpose there isn’t much to discover or analyze about them; not to mention the fact that confusing business events and their IT shadows is bound to undermine the whole decision-making process. So what is at stake for OI is how to design IT events as to timely and accurately trail the relevant business events.

Operational Intelligence & Actual Knowledge

As already noted, operational intelligence (OI) is about decision-making, which entails changing the state of objects, processes, or expectations. Compared to knowledge management (KM) which may or may not be time-related, OI is inherently bound to the actual state of affairs: on one hand it relies on specific and timed information, on the other hand it renders that information obsolete when it triggers decisions.

At the risk of oversimplification, operational intelligence can first be understood as a combination of traditional disciplines:

  • Data-mining is to filter facts and events, capture data, and analyze it into information.
  • Knowledge management chart information with regard to business objectives and enterprise capabilities.
  • Decision-making manage time-stamps and plan commitments subject to accuracy and likelihood.

But the specificity of operational intelligence is to be found in the way these functions are intertwined and cross-fed by operational concerns.

To begin with, data mining can be dynamically adjusted depending on what is needed for decision-making, and when. As a corollary, with the benefits of data so cooked in advance, some decisions can be taken directly, bypassing the mediation (and delays) of information processing. From a cognitive point of view that would be the equivalent of non symbolic (aka implicit) knowledge to be processed by neuronal networks.

Parceling out OI objectives

Decision-making and differentiated knowledge management

Conversely, information processing could benefit from operational feedback so that knowledge management would be driven by business value, and the supporting information weighted by timing and shelf-life considerations. Whereas part of it could be done through implicit connections, it would be more comprehensively and explicitly achieved through symbolic representations.

Operational Intelligence: Signals vs Symbols

Assuming that intelligence is the ability to figure out situations and solve problems, one may conclude that it is inherently operational. Along the same reasoning, if knowledge is information put to use, it may be implicit as well as explicit.

Nonetheless, the merit of operational intelligence is to bring to a single functional roof symbolic and non symbolic knowledge, the former explicit, using mediation of semantic constructs and used to weight information and support managed decisions, the latter implicit, using direct associations between actual objects or phenomena, and supporting automated decisions.

Further Readings

Data Mining & Requirements Analysis

October 24, 2015

Preamble

Data mining explores business opportunities and competitive advantage, requirements analysis describe supporting applications. Both use models, the former’s are predictive and ephemeral, the latter’s descriptive (or prescriptive) and perennial.

(Andreas Gursky)

Data mining: sorting business wheat from world chaff (Andreas Gursky)

Understanding how they are related could significantly improve processes maturity.

Data vs Requirements Analysis

Nowadays the success of a wide range of enterprises critically depends on two achievements:

  1. Mapping business models to changing environments by sorting through facts, capturing the relevant data, and processing the whole into meaningful and up to date information. That can be achieved through analysis models meant to described business expectations with regard to supporting systems.
  2. Putting that information into effective use through their business processes and supporting systems. That is done by systems architecture and design models meant to prescribe how to build software artifacts.
vv

From data analysis to systems requirements and software design

Those challenges are converging: under the pressure of markets forces and technological advances most of traditional fences between business channels and IT systems are crumbling, putting the focus on the functional integration between data mining and production systems. That’s where predictive models can help by anchoring descriptive models to moving markets and by cross-feeding analysis and operations. How that can be achieved has been the bread and butter of good corporate governance for some time, but there has been less interest for the third branch, namely how data analysis (predictive models) could “inform” business requirements (descriptive models).

From Data to Information

Facts are not given but must be captured through a symbolic description of actual observations. That entails some observer set on task using a mix of conceptual and technical apparatus. Data mining and requirements analysis are practical realizations of that process:

  • Data mining relies on analytic tools to extract revealing information that could be used to chart opportunities along business models.
  • Requirements analysis relies on business processes and users’ practice to extract symbolic descriptions that will be used to build models of supporting applications.

If both walk the path from data to information, their objectives are different: the former’s is to improve business decisions by making sense of actual observations; the latter’s is to build system surrogates from the symbolic descriptions of actual business objects and activities.

Anchors & Structures: Plasticity of  Business Entities

Perhaps paradoxically, business agility calls for terra firma because nimble trades must be rooted in corporate identity and business continuity. As a consequence, the first step of requirements analysis should be to associate individuals business objects or activities with stable and consistent identification mechanisms, and to group them with regard to that mechanism:

  • External entities with natural (person) or designed identity (car).
  • Symbolic entities for roles (customer) or commitments (maintenance contract).
  • Actual activities (promotion campaign) and events (sale) or business logic (promotion).
Anchors

Anchors

Conversely, as the aim of data analysis is to explore every business angle, individual observations are supposed to be moved across groups; yet, since the units identified by data analysis will have to be aligned with the ones described by requirements analysis, moves must also keep track of identities. That dilemma between continuity of identified structures on one side, plasticity of functional aspects on the other side, can be illustrated by banks which, in response to marketing requirements, had to shift from account (internal identification) to customer (external identification) based systems.

From account (left) to customer (right) centered systems

It’s easier to market insurance from customer centered systems (right) than from account centered ones (left)

That challenge can be overcome by linking the identification of symbolic entities to external anchors.

Profiles & Features: Versatility of Business Opportunities

As noted above, requirements and data analysis are set on the same road but driven by different forces: the former tries to group individuals with regard to identification mechanisms before fleshing them out with relevant features; the latter tries to group individuals with given identities according to features and opportunity profiles. Yet, what could appear as collision courses may become a meeting of minds if both courses are charted with regard to variants analysis.

From the requirements perspective the primary concern is to distinguish between structural and functional variants:

  • Structural variants are bound to identities, i.e set up-front for the respective life-cycle of individual business objects or transactions. As a consequence they cannot be changed without undermining business continuity. Moreover, being part and parcel of descriptors (e.g  types and use cases) their change will affect engineering processes.
  • Functional variants may vary during the respective life-cycle of individual business objects or transactions. As a consequence they can be changed without undermining business continuity, and changes in descriptors (e.g partitions and scenarii) can be managed without affecting engineering processes.

From the data mining perspective the objective is to improve the benefits of information systems for decision-making processes:

  • Static: how to classify individuals as to reduce the uncertainty of predictions
  • Dynamic: how to classify business options as to reduce the uncertainty of decisions.

Since those objectives are set for individuals, constraints on continuity and consistency can be dealt with independently of the description of symbolic surrogates.

Identified individuals with profiles for customers (a), their behaviors (b), and conciliatory gestures (c)

Identified individuals with profiles for customers (a), their behaviors (b), and promotional gestures (c)

It ensues that perspectives can be adjusted by factoring out the constraints of continuity and consistency for business objects (e.g cars), agents (e.g customer) and processes (e.g repair). Profiles for agents (a), behaviors (b), and business options (c) could then be freely explored and tailored with regard to changes in business environment and objectives.

Applying Data Analysis to Requirements

Not surprisingly data analysis techniques can be used to adjust perspectives. For that purpose a sample of individuals (business objects and operations) representing the population targeted by requirements would have to be submitted to basic mining routines. Borrowing a catalog from F. Provost & T. Fawcett:

  1. Classification: estimates the probability for each individual (objects or operations) to belong to a set of classes; can be used to assess the closeness of the variants (respectively power-types or execution paths) identified by requirements analysis.
  2. Regression: reverse classification; estimates how much of individual features valuations can be explained by the proposed classifications.
  3. Similarity: a shallow version of classification; can be used to assess the distance between variants and consolidate the proposed classifications.
  4. Clustering: a deep version of classification; can be used to distinguish between shallow and natural classifications.
  5. Co-occurrence: deals with behavioral variants; can be used to distinguish between functional and structural classifications.
  6. Profiling: reverse of co-occurrence; can be used to consolidate functional and structural classifications.
  7. Links prediction: can be used to define relationships.
  8. Data reduction: eliminate redundant individuals; can be used to consolidate requirements and refine tests scenarii.
  9. Causal modeling: brings together business logic (events and rules) and users decisions; should provide the backbone of tests scenarii.

Besides the direct benefits for requirements, such procedures may help to bridge the span between data and requirements analysis and significantly improve processes’ capability and maturity level.

Business Objectives & Enterprise Architecture Capabilities

Data mining being first and foremost about competitive edge, it relies on a timely and effective coupling between enterprises capabilities and business opportunities. But the dilemma between continuity and plasticity described above for business objects and processes reappears at enterprise level: how to conciliate architecture, by nature perennial, with the agility needed to make the best of changing and competitive environments ?

As architectural big bang is arguably a last resort option, answers to that question must be progressive and local: if changes are to be swift and pertinent they must be both circumscribed and leveraged to the relevant parts of architecture. Taking an (amended) leaf of the Zachman framework, its sixth column (“Why” ) could be reset as a line for business and operational objectives that would cross the original five columns instead of the architecture layers. Using a pentagonal representation of enterprise architecture, that line would be set on the outer range.

ccc

Enterprise Architecture and the loci of change

It must be reminded that setting objectives on a line crossing the columns of capabilities instead of a column crossing the lines of layers means that objectives are set at enterprise level and their cascading impact traced and managed through layers.

Symbolic Systems vs World

Nowadays the life of enterprises fully depends on the ability of their systems to deal with their environment by making sense of data and supporting production systems. As long as environments were a hotchpotch of actual and symbolic artifacts the pros and cons of integration could be balanced. But the generalization of digital facts and transactions has upended the balance: there is no more room or time for latency and enterprises must unify the symbolic representation of their business models, organization, and systems. That should be the role of conceptual models but the challenge is to avoid flights to abstraction and rainbow chases.

OpenConcepts_00

Conceptual models as bridges between environments, processes, and systems.

That could be done by introducing a conceptual indexing scheme open to extensions but with its footprint defined by business processes and systems functionalities.

Selected Readings

Use Cases & Action Semantics

June 8, 2015

Synopsis

Use cases are meant to describe dialogues between users and systems, yet they usually don’t stand in isolation. On one hand they stem from business processes, on the other hand they must be realized by system functionalities, some already supported, others to be newly developed. As bringing the three facets within a shared modeling paradigm may seem a long shot, some practical options may be at hand.

xxx

Use case & action semantics (Robert Doisneau)

To begin with, a typical option would be to use the OMG’s Meta-Object Facility (MOF) to translate the relevant subset of BPM models into UML ones. But then if, as previously suggested, use cases can be matched with such a subset, a more limited and pragmatic approach would be to introduce some modeling primitives targeting UML artifacts.

From BPM to UML: Meta-model vs Use cases.

From BPM to UML: Meta-model vs Use cases.

For that purpose it will be necessary to clarify the action semantics associated with the communication between processes and systems.

Meta-models drawbacks

Contrary to models, which deal with instances of business objects and activities, meta-models are supposedly blind to business contents as they are meant to describe modeling artifacts independently of what they stand for in business contexts. To take an example, Customer is a modeling type, UML Actor is a meta-modeling one.

To stress the point, meta-languages have nothing to say about the semantics of targeted domains: they only know the language constructs used to describe domains contents and the mapping rules between those constructs.

As a consequence, whereas meta-languages are at their best when applied to clear and compact modeling languages, they scale poorly because of the exponential complexity of rules and the need to deal with all and every language idiosyncrasies. Moreover, performances degrade critically with ambiguities because even limited semantics uncertainties often pollute the meaning of trustworthy neighbors generating cascades of doubtful translations (see Knowledge-based model transformation).

ccc

Factoring a core with trustworthy semantics (b) will prevent questionable ones from tainting the whole translation (a).

Yet, scalability and ambiguity problems can be overcame by applying a core of unambiguous modeling constructs to a specific subset, and that can be achieved with use cases.

Use Cases & UML diagrams

As it happened, the Use Case can be seen as the native UML construct, the original backbone around which preexisting modeling artifacts have been consolidated, becoming a central and versatile hub of UML-based development processes:

  • Sequence diagrams describe collaborations between system components but can also describe interactions between actors and systems (i.e use cases).
  • Activity diagrams describe the business logic to be applied by use cases.
  • Class diagrams can be used for the design of software components but also for the analysis of business objects referenced by use cases.
  • State diagrams can be used for the behavior of software components but also for the states of business objects or processes along execution paths of use cases.
Use cases at the hub of UML diagrams

Use case as Root Sequence

Apart of being a cornerstone of UML modeling, use cases are also its doorway as they can be represented by a simple sequence diagram describing interactions between users and systems, i.e between business processes and applications. So the next step should be to boil down the semantics of those interactions.

Use Cases & Action Semantics

When use cases are understood as gateways between business users and supporting systems, it should be possible to characterize the basic action semantics of messages in terms of expectations with regard to changes and activity:

  • Change: what process expects from system with regard to the representation of business context.
  • Activity: what process expects from system with regard to its supporting role.
Basic action semantics for interactions between users (BPM) and systems (UML)

Basic action semantics for interactions between users (BPM) and systems (UML)

Crossing the two criteria gives four basic situations for users-to-system action semantics:

  • Reading: no relevant change in the environment has to be registered, and no activity has to be supported.
  • Monitoring: no relevant change in the environment has to be registered, but the system is supposed to keep track on some activity.
  • Achievement: the system is supposed to keep track on some specific change in the environment without carrying out any specific activity.
  • Accomplishment: the system is supposed to keep track on some specific change in the environment and support associated activity.

When use cases are positioned at the center of UML diagrams, those situations can be associated with modeling patterns.

Use Cases & Modeling Patterns

If use cases describe what business processes expect from supporting systems, they can be used to map action semantics to UML diagrams:

  • Reading: class diagrams with relevant queries.
  • Monitoring: activity diagrams with reference to class diagrams.
  • Achievement:  class diagrams with associated state diagrams.
  • Accomplishment:  activity diagrams with associated state diagrams and reference to class diagrams.
From use cases action semantics to UML diagrams

From use cases action semantics to UML diagrams

While that catalog cannot pretend to fully support requirements, the part it does support comes with two critical benefits:

  1. It fully and consistently describes the interactions at architecture level.
  2. It can be unambiguously translated from BPM to UML.

On that basis, use cases provide a compact and unambiguous kernel of modeling constructs bridging the gap between BPM and UML.

Further Reading

Use Cases Shouldn’t Know About Classes

January 5, 2015

Summary

Uses cases are meant to describe how users interact with systems, classes are meant to describe software components, including those executing use cases. It ensues that classes are introduced with the realization of use cases but are not supposed to appear as such in their definition.

TurkAutomat

Users are not supposed to know about surrogates

The Case for Use Cases

Use cases (UCs) are the brain child of Ivar Jacobson and often considered as the main innovation introduced by UML. Their success, which largely outdoes UML’s footprint, can be explained by their focus and simplicity:

  • Focus: UCs are meant to describe what happens between users and systems. As such they are neatly bounded with regard to their purpose (UCs are the detailed parts of business processes supported by systems) and realization (UCs are implemented by software applications).
  • Simplicity: while UCs may eventually include formal (e.g pre- and post-conditions) and graphical (e.g activity diagrams) specifications, they can be fully defined and neatly circumscribed using stick actors (for the roles played by users or any other system) and ellipses (for system behaviors).
vvv

Use Cases & UML diagrams

As it often happens to successful innovations, use cases have been widely interpreted and extended; nonetheless, the original concepts introduced by Ivar Jacobson remain basically unaltered.

The Point of Use Cases

Whereas focus and simplicity are clearly helpful, the primary success factor is that UCs have a point, namely they provide a conceptual bridge between business and system perspectives. That appears clearly when UCs are compared to main alternatives like users’ stories or functional requirements:

  • Users’ stories are set from business perspective and lack explicit constructs for the parts supported by systems. As a consequence they may flounder to identify and describe business functions meant to be shared across business processes.
  • Conversely, functional requirements are set from system perspective and have no built-in constructs linking business contexts and concerns to their system counterparts. As a consequence they may fall short if business requirements cannot be set upfront or are meant to change with business opportunities.

Along that understanding, nothing should be done to UCs that could compromise their mediating role between business value and system capabilities, the former driven by changes in business environment and enterprise ability to seize opportunities, the latter by the continuity of operations and the effective use of technical or informational assets.

Business Objects vs Software Components

Users’ requirements are driven by concrete, partial, and specific business expectations, and it’s up to architects to weld those diverse and changing views into the consistent and stable functional abstractions that will be implemented by software components.

Users' requirements are driven by concrete, partial, and specific concerns

Users’ requirements are driven by concrete, partial, changing and specific concerns, but supported by stable and fully designed software abstractions.

Given that double discrepancy of objectives and time-scales, business analysts should not try to align their requirements with software designs, and system analysts should not try to second-guess their business counterparts with regard to future business objects. As a consequence, respective outcomes would be best achieved through a clear separation of concerns:

  • Use cases deal with the business value of applications, mapping views on business objects to aspects of classes.
  • Functional architectures deal with assets, in particular the continuous and consistent representation of business objects by software components as described by classes.
vvv

How to get best value from assets

As it happens, that double classification with regard to scope and purpose should also be used to choose a development model: agile when scope and purpose can be united, phased approach otherwise.

Further Reading

 

How to Mind a Tree Story

December 8, 2014

Summary

Depending on devotees or dissenters, the Agile development model is all too often presented as dead-end or end-of-story. Some of that unfortunate situation can be explained, and hopefully pacified, by comparing users’ stories to plants, with their roots, trunks, and branches. Assuming that agility calls for sound footings and good springboards, it may be argued that many problems arise with stories barking at the wrong tree (application level) or getting lost in the woods (architecture level).

How to Mind/Mend a True/Tree Story

How to Mind/Mend a True/Tree Story

Application level: Trees, Bushes and Hedges

As Aristotle first stated, good stories have to follow the three unities: one course of action, located in a single space, run along continuous time.

That rule is clearly satisfied  by stories that can be developed like plants growing from clearly identified roots.

Yet, stories like bushes may grow too many offshoots to be accounted for by a single action narrative; in that case it may be possible to single out a primary trunk and a set of forking branches along which different scenarii could be developed.

More serious difficulties may appear with thickets mixing offshoots from different bushes sharing the same space. That situation will first require some ground work in order to single out individual roots, and then use them to extricate each bush separately. When, like offshoots that actually mingle, story-lines cross and share actions, the description of such actions (aka features) is to be factored out and separated from the contexts of their enactment in the different story-lines.

Finally, like bushes in hedges, stories may chronicle repeated activities serving some collective purpose. That configuration is both easy to recognize and dealt with effectively by introducing a stereotyped story feature for collections and loops management.

Architecture level: Groves, Woods and Plantations

Contrary to hedges which are built on the similarity of their constituents, groves are based on their functional differences, and that can also be seen as a critical distinction between containers and architectures.

In agile parlance, that is best compared to the difference between stories and epics, the former telling what happens between users and applications, the latter taking a bird’s view of the relationships between business processes and systems.

In most of the cases the question will arise for sizable stories deemed too large for development purposes. When dealing with that situation the first step should be to look for thickets and bushes, respectively to be set apart as individual bushes or refined as scenarii. When still confronted with multiple roots, the question would be to decide between hedges and groves, that is between repeated activities and collaboration. And that decision would be critical because collaborations call for a different kind of story (aka epics or themes) set at a higher level, namely architecture.

Scaling Ups and Downs

Assuming the three-units rule cannot be met, two alternative approaches are possible, depending on whether the story has to be broken down or upgraded to an epic, and the undoing of the rule can be used to make a decision:

  1. When the course of actions, once started, is to be contingent on subsequent business (aka external) events the story should be upgraded to an epic, as it will often refer to a part or whole of a business process.
  2. Otherwise: when activities are set along different periods of time (i.e contingent on time-events) the story can be broken down depending on size, functional architecture, or development constraints.
  3. Otherwise: when activities are distributed across locations it may be necessary to factor out architecture-dependent features dealing with shared address spaces and synchronization mechanisms

Applying those guidelines to stories will put the whole development processes on rails and help to align requirements with their architectural footprint: business logic, system functionalities, or platform technologies.

Further Readings

External Links