Archive for the ‘Organization’ Category

Business Agility & the OODA Loop

November 21, 2016

Preamble

The OOAD (Observation, Orientation, Decision, Action) loop is a real-time decision-making paradigm developed in the sixties by Colonel John Boyd from his experience as fighter pilot and military strategist.

(Moholy Nagy)

How to get inside opponent’s loop (Lazlo Moholy-Nagy)

The relevancy of OODA for today’s operational decision-making comes from the seamless integration of IT systems with business operations and the resulting merits of agile development processes.

Business: End of Discrete Time-Frames

Business governance was used to be phased: analyze the market, select opportunities, build capabilities, launch operations. No more. With the melting of the fences between actual and symbolic realms, periodic transitional events have lost most of their relevancy. Deprived of discrete and robust time-frames, the weaving of observed facts with business plans has to be managed on the fly. Success now comes from continuous readiness, quicker tempo, and the ability to operate inside adversaries’ time-scales, for defense (force competitor out of favorable position) as well as offense (get a competitive edge). Hence the reference to dogfights.

Dogfights & Agile Primacy

John Boyd train of thoughts started with the observation that, despite the apparent superiority of the soviet Mig 15 on US F-86 during the Korea war, US fighters stood their ground. From that factual observation it took Boyd’s comprehensive engineering work to demonstrate that as far as dogfights were concerned fast transients between maneuvers (aka agility) was more important than technical capabilities. Pushed up Pentagon’s reluctant ladders by Boyd’s sturdy determination, that conclusion have had wide-ranging consequences in the design of USAF fighters and pilots formation for the following generations. Its influence also spread to management, even if theories’ turnover is much faster there, and shelf-life much shorter.

Nowadays, with the accelerated integration of business processes with IT systems, agility is making a comeback from the software engineering corner. Reflecting business and IT convergence, principles like iterative development, just-in-time delivery, and lean processes, all epitomized by the agile software development model, are progressively mingling into business practices with strong resemblances to dogfights; and the resemblances are not only symbolic.

IT Systems & Business Competition

While some similarities between dogfights and business competition may seem metaphorical, one critical aspect is all too real, namely the increasing importance of supporting machines, IT systems or fighter jets.

Basically, IT systems, like fighters’ electronics, are tasked to observe environments, analyse changes in relation to position and objectives, and support decision-making. But today’s systems go further with two qualitative leaps:

  • The seamless integration of physical and symbolic flows let systems manage some overlapping between supporting decisions and carrying out actions.
  • Due to their artificial intelligence capabilities, systems can learn on-the-job and improve their performances in real-time feedback loops.

When combined, these two trends have drastic impact on the way machines can support human activities in real-time competitive situations. More to the point, they bring new light on business agility.

Business Agility

As illustrated by the radical transformation of fighter cockpits, the merging of analog and digital flows leaves little room for human mediation: data must be processed into information and presented instantly along two critical dimensions, one for decision-making, the other for information life-cycle:

  • Man/Machine interfaces have to materialize the merging of actual and symbolic realms as to support just-in-time decision-making.
  • The replacement of phased selected updates of environment data by continuous changes in raw and massive data means that the status of information has to be incorporated with the information itself, yet without impairing decision-making.

Beyond obvious differences between dogfights and business competition, that double exigence is to characterize business agility:

  1. Instant understanding of changes in business opportunities (Observation) .
  2. Simultaneous assessment of the reliability and shelf-life of pertaining information with regard to current positions and operations (Orientation).
  3. Weighting of options with regard to enterprise capabilities and broader objectives (Decision).
  4. Carrying out of decisions within the relevant time-span (Action).

That understanding of business agility is to be compared with its development and architecture cousins. Yet it doesn’t seem to add much to data analytics and operational decision-making. That is until the concept of orientation is reassessed.

Agility & Orientation: Task vs Tack

To begin with basics, the concept of Orientation comes with a twofold meaning, actual and symbolic:

  • Actual: a position with regard to external (e.g spacial) coordinates, possibly qualified with abilities to observe, move, or act.
  • Symbolic: a position with regard to internal (e.g beliefs or aims) references, possibly mixed with known or presumed orientation of other agents, opponents or associates.

When business is considered, data analytics is supposed to deal comprehensively and accurately with markets’ actual orientations. But the symbolic facet is left largely unexplored.

Boyd’s contribution is to bring together both aspects and combine them into actual practice, namely how to foretell the tack of your opponents from their actual tracks as well as their surmised plans, while fooling them about your own moves, actual or planned.

Such ambitions once out of reach, can now be fulfilled due to the combination of big data, artificial intelligence, and the exponential growth on computing power.

Further Readings

 

Business Problems shouldn’t sleep with IT Solutions

October 8, 2016

Preamble

The often mentioned distinction between problem and solution levels may make sense from an analyst’s particular point of view, whether business or system.  But blending problems and solutions independently of their nature becomes a serious over simplification for enterprise architects considering that one of their prime responsibility is to keep apart business problems from IT solutions.

(Mircea Cantor)

Functional problem with technical solution (Mircea Cantor)

That issue is relevant from engineering as well as business perspective.

Engineering View: Problem Levels & Architecture Layers

As long as computers are used to solve problems the only concern is to find the best solution, and the only architecture of concern is software’s.

But enterprise architects have to deal with systems, not computers, namely how to best serve business objectives with corporate resources, across business units and along business cycles. For that purpose resources (financial, human, technical) and their use are to be layered according to the nature of problems and solutions: business processes (enterprise), supporting functionalities (systems), and technologies (platforms).

From an engineering perspective, the intended congruence between problems levels and architecture layers can be illustrated with the OMG’s model driven architecture (MDA) framework:

  • Computation independent models (CIMs) deal with business processes solutions, to be translated into functional problems for supporting systems.
  • Platform independent models (PIMs) deal with functional solutions, to be translated into technical problems for supporting platforms.
  • Platform specific models (PSMs) deal with technical solutions, to be implemented as code.
MDA layers correspond to a clear hierarchy of problems and solutions

MDA layers can be mapped to a clear hierarchy of problems and solutions

Along that understanding, architectures can be seen as solutions, and the primary responsibility of enterprise architects is to see that problems/solutions brace remain in their respective swim-lanes.

Business View: Business Value & Enterprise Assets

Whereas the engineering perspective may appear technical or specific to a model based approach, the same issue is all the more significant when expressed with regard to business concerns and corporate governance. In that case the critical distinction is between business value and assets:

  • Business value: Problems are set by business opportunities, and solutions by processes and applications. The critical factor is reactivity and time-to-market.
  • Assets: Problems are set by business objectives and strategy, and solutions are to be supported by organization and systems capabilities. The critical factor is reuse and ROI.
Decision-making must distinguish between business opportunities and enterprise governance

Decision-making must distinguish between business opportunities and enterprise governance

If opportunities are to be seized and operations managed on the fly  yet tally with strategic decisions, respective problems and solutions should be kept apart. Juggling with their dynamic alignment is at the core of enterprise architects’ job description.

Enterprise Architects & Governance

Engineering and business perspectives are not to be seen as the terms of an alternative to be picked by enterprise architects. As a matter of fact they must be crossed and governance policies selected depending on the point of view:

  • Looking at EA from an engineering perspective,  the business one will focus on systems governance and assets management as epitomized by model based systems engineering schemes.
  • Looking at EA from a business perspective, the engineering one will focus on lean and just-in-time solutions, as epitomized by agile development models.

As far as governance of large and complex corporate entities, supposedly EA’s primary target, must deal with tactical, operational, and strategic concerns, the nexus between business and engineering perspectives is where enterprise architects are to stand.

 

 

Models as Parachutes

August 31, 2016

Preamble

The recent paralysis of British Airways world operations (due to a power failure, if officials are to be believed), following the crash of Delta Airlines’ reservation system and a number of similar incidents, once again points to the reliability of of large and critical IT systems.

László Moholy-Nagy-para

Models as Parachutes (László Moholy-Nagy)

Particularly at risk are airlines or banking systems, whose seasoned infrastructures, at the cutting edge when introduced half a century ago, have been strained to their limit by waves of extensive networked new functionalities. Confronted to the magnitude and complexity of overall modernization, most enterprises have preferred piecemeal updates to architectural leaps. Such policies may bring some respite, but they may also turn into aggravating factors, increasing stakes and urgency as well as shortening odds.

Assuming some consensus about stakes, hazards, and options, the priority should be to overcome jumping fears by charting a reassuring perspective in continuity with current situation. For that purpose models may provide heartening parachutes.

Models: Intents & Doubts

Models can serve two kinds of purposes:

  • Describe business contexts according to enterprise objectives, foretell evolution, and simulate policies.
  • Prescribe the architecture of supporting systems and the design of software components.
Business analyst figure maps from territories, software architects create territories from maps

Models Purposes: Describe contexts & concerns, Design supporting systems

Frameworks were supposed to combine the two perspectives, providing a comprehensive and robust basis to systems governance. But if prescriptive models do play a significant role in engineering processes, in particular for code generation, they are seldom fed by their descriptive counterpart.

Broadly speaking, the noncommittal attitudes toward descriptive models comes from a rooted mistrust in non executable models: as far as business analysts and software engineers are concerned, such models can only serve as documentary evidence. And since prescriptive models are by nature grounded to systems’ inner making, there is no secure conceptual apparatus linking systemic changes with their technical consequences. Hence the jumping frights.

Overcoming those frights could be achieved by showing the benefits of secure and soft landings.

Models for Secure Landings

As any tools, models must be assessed with regard to their purpose: prescriptive ones with regard to feasibility and reliability of architectures and design, descriptive ones with regard to correctness and consistency. As already noted, compared to what has been achieved for the former, nothing much has been done about the validity of the latter.

Yet, and contrary to customary beliefs, the rigorous verification of descriptive (aka extensional) models is not a dead-end. Of course these models can never be proven true because there is no finite scope against which they could be checked; but it doesn’t mean that nothing can be done to improve their reliability:

Models must be assessed with regard to their purpose

How to Check for secure landings

  • Correctness: How to verify that all the relevant individuals and features are taken into account. That can only be achieved empirically by building models open to falsification.
  • Consistency: How to verify that the symbolic descriptions (categories and connectors) are complete, coherent and non redundant across models and abstraction levels. That can be formally verified.
  • Alignment: How to verify that current and required business processes are to be seamlessly and effectively supported by systems architectures. That can be managed by introducing a level of indirection, as illustrated by MDA with platform independent models (PIMs) set between computation independent (CIMs) and platform specific (PSMs) ones.

Once established on secure grounds, models can be used to ensure soft landings.

Models for Soft Landings

Set within model based system engineering frameworks, models will help to replace piecemeal applications updates by seamless architectures modernization:

  • Systems: using models shift the focus of change from hardware to software.
  • Enterprise: models help to factor out the role of organization and regulations.
  • Project management: models provide the necessary hinge between agile and phased projects, the former for business driven applications, the latter for architecture oriented ones. Combining both approaches will ensure than lean and just-in-time processes will not be sacrificed to system modernization.
Seamless architectures modernization (a) vs Piecemeal applications updates (b).

Seamless architectures modernization (a) vs Piecemeal applications updates (b).

More generally, and more importantly, models are the option of choice (if not the only one) for enterprise knowledge management:

  • Business: Computation independent models (CIMs), employed to trace, justify and rationalize business strategies and processes portfolios.
  • Systems: Platform specific models (PSMs), employed to trace, justify and rationalize technical alternatives and decisions.
  • Decision-making and learning: Platform independent models (PIMs), employed to align business and systems and support enterprise architecture governance.

And knowledge management is arguably the primary factor for successful comprehensive modernization.

Strategic Decision-making: Cash or Crash

Governance is all about risks and decision-making, but investing on truly fail-safe systems for airlines or air traffic control can be likened to a short bet on the Armageddon, and that cannot be easily framed in a neat cost-benefit analysis. But that may be the very nature of strategic decision-making: not amenable to ROI but aiming at risks assessment and the development of the policies apt to contain and manage them. That would be impossible without models.

Further Reading

Agile Business Analysis: From Wonders to Logic

March 7, 2016

Time and again new recruits will ask about the role of business analysts. Considering that such a question is seldom heard from software engineers, are BAs more curious about their job, or are they standing on more tentative grounds ? If that’s the case agility would help them to flip-flop between business quicksands to systems hard rocks.

vvv

How to make sense of business wonders (Hieronymus Bosch)

Holding the fort vs scouting outskirts

Systems architects and software engineers may have to meet esoteric business requirements, but their responsibility is first and foremost to guarantee the functional and economic sustainability of systems. On that account they are given licence to build solid walls and secure gateways, and to enforce their own languages and rules upon well vetted parties.

Business analysts don’t get such a free hand: while being straitened by software engineers constructs and constraints, their primary undertaking is to explore business wilds, reconnoitre competitors, trace new tracks, and learn the dialects of any nicknamed natives ready to trade.

No wonder the qualms of new business analysts.

Great businesses make their own rules

The best rules in business are the ones still unbeknownst, as success is most often brought by disruptive initiatives taking advantage of previously undiscovered opportunities. It ensues that at its core, BAs’ job description is to relentlessly look across the frontier for still uncharted businesses, and bring them back to the digitized world of shipshape business domains and processes.

For that purpose BAs will have to juggle with the fuzzy idiosyncrasies of new business openings until they can be aligned with the functionalities of “legacy” systems.

BA’s Agility

While usually presented as a software engineering hallmark, agility may be equally useful for business analysts as they have to balance two crossing perspectives:

  • Analysis: sorting detailed activities into business processes.
  • Synthesis: factoring out business functions and mapping them to systems capabilities.

That could be a challenging achievement if carried out sequentially: crossing back and forth between changing scope and steady capabilities could generate unsettling alternatives and unbounded complexity.

The agile development model is meant to tackle the difficulties through iterations and collaboration without being too specific about the kind of agility required from business analysts and software engineers.

Yet the apparent symmetry between the parties may be misleading: whereas software engineers don’t have (and shouldn’t even try) to second guess business analysts, business analysts shouldn’t forget that at the end of the day business expectations, however exotic or esoteric, will have to feed very conformist logical beasts.

Further Readings

Agile Collaboration & Social Creativity

February 22, 2016

Open-plan offices and social networks are often seen as significant factors of collaboration and innovation, breeding and nurturing the creativity of knowledge workers, weaving their ideas into webs of truths, and molding their minds into some collective intelligence.

Brains need some breathing space

Open-plan offices, collaboration, and knowledge workers creativity

Yet, as creativity comes with agility, knowledge workflows should give brains enough breathing space lest they get more pressure than pasture.

Collaboration & Thinking Flows

Collaboration is a means to an end. To be of any use exchanges have to be fed with renewed ideas and assumptions, triggering arguments and adjustments, and opening new perspectives. If not they may burn themselves out with hollow considerations blurring clues and expectations, clogging the channels, and finally stemming the thinking flows.

Taking example from lean manufacturing, the first objective should be to streamline knowledge workflows as to eliminate swirling pools of squabbles, drain stagnant puddles of stale thoughts, and gear collaboration to flowing knowledge streams. As illustrated by flood irrigation, the first step is to identify basin levels.

Dunbar Numbers & Collaboration Basins

Studying the grooming habits of social primates, psychologist Robin Dunbar came to the conclusion that the size of social circles that individuals of a living species can maintain is set by the size of brain’s neocortex. Further studies have confirmed Dunbar’s findings, with the corresponding sizes for humans set around 10 for trusted personal groups and 150 for untried social ones. As it happens, and not by chance, those numbers seem to coincide with actual observations: the former for personal and direct collaboration, the latter for social and mediated collaboration.

Based on that understanding, the objective would be to organize knowledge workflows across two primary basins:

  • On-site and face-to-face collaboration with trusted co-workers. Corresponding interactions would be driven by personal dispositions and attitudes.
  • On-line and networked collaboration with workers, trusted or otherwise. Corresponding interactions would be based on shared interests and past exchanges.

Knowledge Workflows

The aim of knowledge workflows is to process data into information and put it to use. That is to be achieved by combining different kinds of tasks, in particular:

  • Data and information management: build the symbolic descriptions of contexts, concerns, and means.
  • Objectives management: based on a set of symbolic descriptions, identify and refine opportunities together with the ways to realize them.
  • Tasks management: allocate rights and responsibilities across organizations and collaboration frames, public and shallow or personal and deep.
  • Flows management: monitor and manage actual flows, publish arguments and propositions, consolidate decisions, …

Taking into account constraints and dependencies between the tasks, the aims would be to balance creativity and automation while eliminating superfluous intermediate products (like documents or models) or activities (e.g unfocused meetings).

With regard to dependencies, KM tasks are often intertwined and cannot be carried out sequentially; moreover, as illustrated by the impact of “creative accounting” on accounted activities, their overlapping is not frozen but subject to feedback, changes and adjustments.

With regard to automation, three groups are to be considered: the first requires only raw processing power and can be fully automated; the second also involves some intelligence that may be provided by smart systems; and the third calls for decision-making that can only be done by human agents entitled by the organization.

At first sight some lessons could be drawn from lean manufacturing, yet, since knowledge processes are not subject to hardware constraints, agile approaches should provide a more informative reference.

Iterative Knowledge Processing

A simple preliminary step is to check the applicability of agile principles by replacing “software” by “knowledge”. Assuming that ground is secured, the core undertaking is to consider what would become of cycles and iterations when applied to knowledge processing:

  • Cycle invariants: tasks would be iterated on given sets of symbolic descriptions applied to the state of affairs (contexts, concerns, and means).
  • Iterations content: based on those descriptions data would be processed into information, changes would be monitored, and possibilities explored.
  • Exit condition: cycles would complete with decisions committing changes in the state of affairs that would also entail adjustments or changes in symbolic descriptions.

That scheme meets three of the basic tenets of the agile paradigm, i.e open scope (unknowns cannot be set in advance), continuity of delivery (invariants are defined and managed by knowledge workers), and users in driving seats (through exit conditions). Yet it still doesn’t deal with creativity and the benefits of collaboration for knowledge workers.

Thinking Space & Pace

The scope of creativity in processes is neatly circumscribed by the nature of flows, i.e the possibility to insert knowledge during the processing: external for material flows (e.g in manufacturing), internal for symbolic flows (e.g in software engineering and knowledge processing).

Yet, whereas both software engineering and knowledge processes come with some built-in capability to redefined their symbolic flows on-the-fly, they don’t grant the same room to creativity. Contrary to software engineering projects which have to close their perspectives on the delivery of working products, knowledge processes are meant to keep them open to new understandings and opportunities. For the former creativity is the means to an end, for the latter it’s the end in itself, with collaboration as means.

Such opposite perspectives have direct consequences for two basic agile collaboration mechanisms: backlog and time-boxing:

  • Backlogs are used to structure and manage the space under exploration. But contrary to software processes whose space is focused and structured by users’ needs, knowledge processes are supposed to play on workers’ creativity to expand and redefine the range under consideration.
  • Time-boxes are used to synchronize tasks. But with creativity entering the fray, neither space granularity or thinking pace can be set in advance and coerced into single-sized boxes. In that case individuals must remain in full control of the contents and stride of their thinking streams.

It ensues that when creativity is the primary success factor standard agile collaboration mechanisms are falling short and intelligent collaboration schemes are to be introduced.

Creativity & Collaboration Tiers

The synchronization of creative activities has to deal with conflicting objectives:

  • On one hand the mental maps of knowledge workers and the stream of their thoughts have to be dynamically aligned.
  • On the other hand unsolicited face-to-face interactions or instant communications may significantly impair the course of creative thinking.

When activities, e.g software engineering, can be streamlined towards the delivery of clearly defined outcomes, backlogs and time-boxes can be used to harness workers’ creativity. When that’s not the case more sophisticated collaboration mechanisms are needed.

Assuming that mediated collaboration has a limited impact on thinking creativity (emails don’t have to be answered, or even presented, instantly), the objective is to steer knowledge workflows across a two-tiered collaboration framework: one personal and direct between knowledge workers, the other social and mediated through enterprise or institutional networks.

On the first tier knowledge workers would manage their thinking flows (content and tempo) independently, initiating or accepting personal collaboration (either through physical contact or some kind of instant messaging) depending on their respective “state of mind”.

The second tier would be for social collaboration and would be expected to replace backlogs and time-boxing. Proceeding from the first to the second tier would be conditioned by workers’ needs and expectations, triggered on their own initiative or following prompts.

From Personal to Collective Thinking

The challenging issue is obviously to define and implement the mechanisms governing the exchanges between collaboration tiers, e.g:

  • How to keep tabs on topics and contents to be safeguarded.
  • How to mediate (i.e filter and time) the solicitations and contribution issued by the social tier.
  • How to assess the solicitations and contribution issued by individuals.
  • How to assess and manage knowledge deemed to remain proprietary.
  • How to identify and manage knowledge workers personal and social circles.

Whereas such issues are customary tackled by various AI systems (knowledge management, decision-making, multi-players games, etc), taken as a whole they bring up the question of the relationship between personal and collective thinking, and as a corollary, the role of organization in nurturing corporate innovation.

Conclusion: Collaboration Spaces vs Panopticon

As illustrated by the rising of futuristic headquarters, leading technology firms have been trying to tackle these issues by redefining internal architecture as collaboration spaces. Compared to traditional open spaces, such approaches try to fuse physical and digital spaces into overlapping layers of collaboration spaces, using artificial intelligence to harness cooperation.

Yet, lest uniform and comprehensive transparency brings the worrying shadow of a panopticon within which everyone can be unknowingly observed, working spaces have to be designed as to enhance collaboration without trespassing on privacy.

That could be achieved with a layered transparency set along the nature of collaboration:

  • Immediate and personal: working cells regrouping 5 to 10 workstations earmarked for a task and used indifferently by teams members.
  • Delayed and personal: open physical spaces accommodating working cells, with instant messaging and geo-localization; spaces are hinged on domains and focused on shared knowledge.
  • On-line and networked: digital spaces merging physical spaces and organizational structures.

That mix of physical and virtual spaces could be dynamically redefined depending on activities, projects, location, and organisation.

Further Readings

External Links