Archive for the ‘Knowledge Management’ Category

Ontologies as Productive Assets

January 22, 2018

Preamble

An often overlooked benefit of artificial intelligence has been a renewed interest in seminal philosophical and cognitive topics; ontologies coming top of the list.

Ontological Questioning (The Thinker Monkey, Breviary of Mary of Savoy)

Yet that interest has often been led astray by misguided perspectives, in particular:

  • Universality: one-fits-all approaches are pointless if not self-defeating considering that ontologies are meant to target specific domains of concerns.
  • Implementation: the focus is usually put on representation schemes (commonly known as Resource Description Frameworks, or RDFs), instead of the nature of targeted knowledge and the associated cognitive capabilities.

Those misconceptions, often combined, may explain the limited practical inroads of ontologies. Conversely, they also point to ontologies’ wherewithal for enterprises immersed into boundless and fluctuating knowledge-driven business environments.

Ontologies as Assets

Whatever the name of the matter (data, information or knowledge), there isn’t much argument about its primacy for business competitiveness; insofar as enterprises are concerned knowledge is recognized as a key assets, as valuable if not more than financial ones, and should be managed accordingly. Pushing the comparison still further, data would be likened to liquidity, information to fixed income investment, and knowledge to capital ventures. To summarize, assets whatever their nature lose value when left asleep and bear fruits when kept awake; that’s doubly the case for data and information:

  • Digitized business flows accelerates data obsolescence and makes it continuous.
  • Shifting and porous enterprises boundaries and markets segments call for constant updates and adjustments of enterprise information models.

But assessing the business value of knowledge has always been a matter of intuition rather than accounting, even when it can be patented; and most of knowledge shapes up well beyond regulatory reach. Nonetheless, knowledge is not manna from heaven but the outcome of information processing, so assessing the capabilities of such processes could help.

Admittedly, traditional modeling methods are too stringent for that purpose, and looser schemes are needed to accommodate the open range of business contexts and concerns; as already expounded, that’s precisely what ontologies are meant to do, e.g:

  • Systems modeling,  with a focus on integration, e.g Zachman Framework.
  • Classifications, with a focus on range, e.g Dewey Decimal System.
  • Conceptual models, with a focus on understanding, e.g legislation.
  • Knowledge management, with a focus on reasoning, e.g semantic web.

And ontologies can do more than bringing under a single roof the whole of enterprise knowledge representations: they can also be used to nurture and crossbreed symbolic assets and develop innovative ones.

Ontologies Benefits

Knowledge is best understood as information put to use; accounting rules may be disputed but there is no argument about the benefits of a canny combination of information, circumstances, and purpose. Nonetheless, assessing knowledge returns is hampered by the lack of traceability: if a part of knowledge is explicit and subject to symbolic representation, another is implicit and manifests itself only through actual behaviors. At philosophical level it’s the line drawn by Wittgenstein: “The limits of my language mean the limits of my world”;  at technical level it’s AI’s two-lanes approach: symbolic rule-based engines vs non symbolic neural networks; at corporate level implicit knowledge is seen as some unaccounted for aspect of intangible assets when not simply blended into corporate culture. With knowledge becoming a primary success factor, a more reasoned approach of its processing is clearly needed.

To begin with, symbolic knowledge can be plied by logic, which, quoting Wittgenstein again, “takes care of itself; all we have to do is to look and see how it does it.” That would be true on two conditions:

  • Domains are to be well circumscribed. 
  • A water-tight partition must be secured between the logic of representations and the semantics of domains.

That could be achieved with modular and specific ontologies built on a clear distinction between common representation syntax and specific domains semantics.

As for non-symbolic knowledge, its processing has for long been overshadowed by the preeminence of symbolic rule-based schemes, that is until neural networks got the edge and deep learning overturned the playground. In a few years’ time practically unlimited access to raw data and the exponential growth in computing power have opened the door to massive sources of unexplored knowledge which is paradoxically both directly relevant yet devoid of immediate meaning:

  • Relevance: mined raw data is supposed to reflect the geology and dynamics of targeted markets.
  • Meaning: the main value of that knowledge rests on its implicit nature; applying existing semantics would add little to existing knowledge.

Assuming that deep learning can transmute raw base metals into knowledge gold, enterprises would need to understand, assess, and improve the refining machinery. That could be done with ontological frames.

Further Reading

External Links

Advertisements

Open Ontologies: From Silos to Architectures

January 1, 2018

To be of any use for enterprises, ontologies have to embrace a wide range of contexts and concerns, often ill-defined for environments, rather well expounded for systems.

Circumscribed Contexts & Crossed Concerns (Robert Goben)

And now that enterprises have to compete in open, digitized, and networked environments, business and systems ontologies have to be combined into modular knowledge architectures.

Ontologies & Contexts

If open-ended business contexts and concerns are to be taken into account, the first step should be to characterize ontologies with regard to their source, justification, and the stability of their categories, e.g:

  • Social: No authority, volatile, continuous and informal changes.
  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to established procedures.
  • Corporate: Defined by enterprises, periodic, changes subject to internal decision-making.
  • Personal: Customary, defined by named individuals (e.g research paper).

Assuming such an external taxonomy, the next step would be to see what kind of internal (i.e enterprise architecture) ontologies can be fitted into, as it’s the case for the Zachman framework.

The Zachman’s taxonomy is built on well established concepts (Who,What,How, Where, When) applied across architecture layers for enterprise (business and organization), systems (logical structures and functionalities), and platforms (technologies). These layers can be generalized and applied uniformly across external contexts, from well-defined (e.g regulations) to fuzzy (e.g business prospects or new technologies) ones, e.g:

Ontologies, capabilities (Who,What,How, Where, When), and architectures (enterprise, systems, platforms).

That “divide to conquer” strategy is to serve two purposes:

  • By bridging the gap between internal and external taxonomies it significantly enhances the transparency of governance and decision-making.
  • By applying the same motif (Who,What, How, Where, When) across the semantics of contexts, it opens the door to a seamless integration of all kinds of knowledge: enterprise, professional, institutional, scientific, etc.

As can be illustrated using Zachman concepts, the benefits are straightforward at enterprise architecture level (e.g procurement), due to the clarity of supporting ontologies; not so for external ones, which are by nature open and overlapping and often come with blurred semantics.

Ontologies & Concerns

A broad survey of RDF-based ontologies demonstrates how semantic overlaps and folds can be sort out using built-in differentiation between domains’ semantics on one hand, structure and processing of symbolic representations on the other hand. But such schemes are proprietary, and evidence shows their lines seldom tally, with dire consequences for interoperability: even without taking into account relationships and integrity constraints, weaving together ontologies from different sources is to be cumbersome, the costs substantial, and the outcome often reduced to a muddy maze of ambiguous semantics.

The challenge would be to generalize the principles as to set a basis for open ontologies.

Assuming that a clear line can be drawn between representation and contents semantics, with standard constructs (e.g predicate logic) used for the former, the objective would be to classify ontologies with regard to their purpose, independently of their representation.

The governance-driven taxonomy introduced above deals with contexts and consequently with coarse-grained modularity. It should be complemented by a fine-grained one to be driven by concerns, more precisely by the epistemic nature of the individual instances to be denoted. As it happens, that could also tally with the Zachman’s taxonomy:

  • Thesaurus: ontologies covering terms and concepts.
  • Documents: ontologies covering documents with regard to topics.
  • Business: ontologies of relevant enterprise organization and business objects and activities.
  • Engineering: symbolic representation of organization and business objects and activities.
KM_MetaOntos

Ontologies: Purposes & Targets

Enterprises could then pick and combine templates according to domains of concern and governance. Taking an on-line insurance business for example, enterprise knowledge architecture would have to include:

  • Medical thesaurus and consolidated regulations (Knowledge).
  • Principles and resources associated to the web-platform (Engineering).
  • Description of products (e.g vehicles) and services (e.g insurance plans) from partners (Business).

Such designs of ontologies according to the governance of contexts and the nature of concerns would significantly reduce blanket overlaps and improve the modularity and transparency of ontologies.

On a broader perspective, that policy will help to align knowledge management with EA governance by setting apart ontologies defined externally (e.g regulations), from the ones set through decision-making, strategic (e.g plate-form) or tactical (e.g partnerships).

Open Ontologies’ Benefits

Benefits from open and formatted ontologies built along an explicit distinction between the semantics of representation (aka ontology syntax) and the semantics of context can be directly identified for:

Modularity: the knowledge basis of enterprise architectures could be continuously tailored to changes in markets and corporate structures without impairing enterprise performances.

Integration: the design of ontologies with regard to the nature of targets and stability of categories could enable built-in alignment mechanisms between knowledge architectures and contexts.

Interoperability: limited overlaps and finer granularity are to greatly reduce frictions when ontologies bearing out business processes are to be combined or extended.

Reliability: formatted ontologies can be compared to typed programming languages with regard to transparency, internal consistency, and external validity.

Last but not least, such reasoned design of ontologies may open new perspectives for the collaboration between cognitive humans and pretending ones.

Further Reading

External Links

2018: Clones vs Octopuses

December 4, 2017

In the footsteps of robots replacing workmen, deep learning bots look to boot out knowledge workers overwhelmed by muddy data.

Cloning Knowledge (Tadeusz Cantor, from “The Dead Class”)

Faced with that , should humans try to learn deeper and faster than clones, or should they learn from octopuses and their smart hands.

Machine Learning & The Economics of Clones

As illustrated by scan-reading AI machines, the spreading of learning AI technology in every nook and cranny introduces something like an exponential multiplier: compared to the power-loom of the Industrial Revolution which substituted machines for workers, deep learning is substituting replicators for machines; and contrary to power looms, there is no physical limitation on the number of smart clones that can be deployed. So, however fast and deep humans can learn, clones are much too prolific: it’s a no-win situation. To get out of that conundrum humans have to put their hand on a competitive edge, e.g some kind of knowledge that cannot be cloned.

Knowledge & Competition

Appraising humans learning sway over machines, one can take from Spinoza’s categories of knowledge with regard to sources:

  1. Senses (views, sounds, smells, touches) or beliefs (as nurtured by the supposed common “sense”). Artificial sensors can compete with human ones, and smart machines are much better if prejudiced beliefs are put into the equation.
  2. Reasoning, i.e the mental processing of symbolic representations. As demonstrated by AlphaGo, machines are bound to fast extend their competitive edge.
  3. Philosophy which is by essence meant to bring together perceptions, intuitions, and symbolic representations. That’s where human intelligence could beat its artificial cousin which is clueless when purposes are needed.

That assessment is bore out by evolution: the absolute dominance established by humans over other animal species comes from their use of knowledge, which can be summarized as:

  1. Use of symbolic representations.
  2. Ability to formulate and exchange representations of contexts, concerns, and policies.
  3. Ability to agree on stakes and cooperate on policies.

On that basis, the third dimension, i.e the use of symbolic knowledge to cooperate on non-zero-sum endeavors, can be used to draw the demarcation line between human and artificial intelligence:

  • Paths and paces of pursuits as part and parcel of the knowledge itself. The fact that both are mostly obviated by search engines gives humans some edge.
  • Operational knowledge is best understood as information put to use, and must include concerns and decision-making. But smart bots’ ubiquity and capabilities often sap information traceability and decisions transparency, which makes room for humans to prevail.

So humans can find a clear competitive edge in this knowledge dimension because it relies on a combination of experience and thinking and is therefore hard to clone. Organizations should make sure that’s where smart systems take back and humans take up.

Organization & Innovation

Innovation being at the root of competitive edge, understanding the role played by smart systems is a key success factor; that is to be defined by organization.

As epitomized by Henry Ford, industrial-era thinking associated innovation with top-down management and the specialization of execution:

  • At execution level manual tasks were to be fragmented and specialized.
  • At management level analysis and decision-making were to be centralized and abstracted.

That organizational paradigm puts a double restraint on innovation:

  • On execution side the fragmentation of manual tasks prevents workers from effectively assessing and improving their performances.
  • On management side knowledge is kept in conceptual boxes and bereft of feedback from actual uses.

That railing between smart brains and dumb hands may have worked well enough for manufacturing processes limited to material flows and subject to circumscribed and predictable technological changes. It didn’t last.

First, as such hierarchies necessarily grow with processes complexity, overheads and rigidity force repeated pruning. Then, flat hierarchies are of limited use when information flows are to be combined with material ones, so enterprises have to start with matrix organization. Finally, with the seamless integration of digital and material flows, perpetuating the traditional line between management and execution is bound to hamstring innovation:

  • Smart tools may be able to perform a wide range of physical tasks without human supervision, but the core of innovation core as well as its front lines are where human and machines collaborate in processing a mix of material and information flows, both learning from the experience.
  • Hierarchies and centralized decision-making are being cut out from feeders when set in networked business environments colonized by smart bots on both sides of corporate boundaries.

Not surprisingly, these innovation trends seem to tally with the social dimension of knowledge.

Learning from the Octopus

The AI revolution has already broken all historical records of footprint (everything is affected) and speed (a matter of years). Given the length of human education cycles, appraising the consequences comes with some urgency, beginning with the disposal of two entrenched beliefs:

At individual level the new paradigm could be compared to the nervous system of octopuses: each arm gets its brain and neurons, and so its own touch of knowledge and taste of decision-making.

On a broader (i.e enterprise) perspective, knowledge should be supported by two organizational layers, one direct and innovation-driven between trusted co-workers, the other networked and knowledge-driven between remote workers, trusted or otherwise.

Further Reading

External Links

NIEM & Information Exchanges

January 24, 2017

Preamble

The objective of the National Information Exchange Model (NIEM) is to provide a “dictionary of agreed-upon terms, definitions, relationships, and formats that are independent of how information is stored in individual systems.”

(Alfred Jensen)

NIEM’s model makes no difference between data and information (Alfred Jensen)

For that purpose NIEM’s model combines commonly agreed core elements with community-specific ones. Weighted against the benefits of simplicity, this architecture overlooks critical distinctions:

  • Inputs: Data vs Information
  • Dictionary: Lexicon and Thesaurus
  • Meanings: Lexical Items and Semantics
  • Usage: Roots and Aspects

That shallow understanding of information significantly hinders the exchange of information between business or institutional entities across overlapping domains.

Inputs: Data vs Information

Data is made of unprocessed observations, information makes sense of data, and knowledge makes use of information. Given that NIEM is meant to be an exchange between business or institutional users, it should have no concern with data mining or knowledge management.

Data is meaningless, information meaning is set by semantic domains.

As an exchange, NIEM should have no concern with data mining or knowledge management.

The problem is that, as conveyed by “core of data elements that are commonly understood and defined across domains, such as person, activity, document, location”, NIEM’s model makes no explicit distinction between data and information.

As a corollary, it implies that data may not only be meaningful, but universally so, which leads to a critical trap: as substantiated by data analytics, data is not supposed to mean anything before processed into information; to keep with examples, even if the definition of persons and locations may not be specific, the semantics of associated information is nonetheless set by domains, institutional, regulatory, contractual, or otherwise.

Data is meaningless, information meaning is set by semantic domains.

Data is meaningless, information meaning is set by semantic domains.

Not surprisingly, that medley of data and information is mirrored by NIEM’s dictionary.

Dictionary: Lexicon & Thesaurus

As far as languages are concerned, words (e.g “word”, “ξ∏¥” ,”01100″) remain data items until associated to some meaning. For that reason dictionaries are built on different levels, first among them lexical and semantic ones:

  • Lexicons take items on their words and gives each of them a self-contained meaning.
  • Thesauruses position meanings within overlapping galaxies of understandings held together by the semantic equivalent of gravitational forces; the meaning of words can then be weighted by the combined semantic gravity of neighbors.

In line with its shallow understanding of information, NIEM’s dictionary only caters for a lexicon of core standalone items associated with type descriptions to be directly implemented by information systems. But due to the absence of thesaurus, the dictionary cannot tackle the semantics of overlapping domains: if lexicons alone can deal with one-to-one mappings of items to meanings (a), thesauruses are necessary for shared (b) or alternative (c) mappings.

vv

Shared or alternative meanings cannot be managed with lexicons

With regard to shared mappings (b), distinct lexical items (e.g qualification) have to be mapped to the same entity (e.g person). Whereas some shared features (e.g person’s birth date) can be unequivocally understood across domains, most are set through shared (professional qualification), institutional (university diploma), or specific (enterprise course) domains .

Conversely, alternative mappings (c) arise when the same lexical items (e.g “mole”) can be interpreted differently depending on context (e.g plastic surgeon, farmer, or secret service).

Whereas lexicons may be sufficient for the use of lexical items across domains (namespaces in NIEM parlance), thesauruses are necessary if meanings (as opposed to uses) are to be set across domains. But thesauruses being just tools are not sufficient by themselves to deal with overlapping semantics. That can only be achieved through a conceptual distinction between lexical and semantic envelops.

Meanings: Lexical Items & Semantics

NIEM’s dictionary organize names depending on namespaces and relationships:

  • Namespaces: core (e.g Person) or specific (e.g Subject/Justice).
  • Relationships: types (Counselor/Person) or properties (e.g PersonBirthDate).
vvv

NIEM’s Lexicon: Core (a) and specific (b) and associated core (c) and specific (d) properties

But since lexicons know only names, the organization is not orthogonal, with lexical items mapped indifferently to types and properties. The result being that, deprived of reasoned guidelines, lexical items are chartered arbitrarily, e.g:

Based on core PersonType, the Justice namespace uses three different schemes to define similar lexical items:

  • “Counselor” is described with core PersonType.
  • “Subject” and “Suspect” are both described with specific SubjectType, itself a sub-type of PersonType.
  • “Arrestee” is described with specific ArresteeType, itself a sub-type of SubjectType.

Based on core EntityType:

  • The Human Services namespace bypasses core’s namesake and introduces instead its own specific EmployerType.
  • The Biometrics namespace bypasses possibly overlapping core Measurer and BinaryCaptured and directly uses core EntityType.
Lexical items are meshed disregarding semantics

Lexical items are chartered arbitrarily

Lest expanding lexical items clutter up dictionary semantics, some rules have to be introduced; yet, as noted above, these rules should be limited to information exchange and stop short of knowledge management.

Usage: Roots and Aspects

As far as information exchange is concerned, dictionaries have to deal with lexical and semantic meanings without encroaching on ontologies or knowledge representation. In practice that can be best achieved with dictionaries organized around roots and aspects:

  • Roots and structures (regular, black triangles) are used to anchor information units to business environments, source or destination.
  • Aspects (italics, white triangles) are used to describe how information units are understood and used within business environments.
nformation exchanges are best supported by dictionaries organized around roots and aspects

Information exchanges are best supported by dictionaries organized around roots and aspects

As it happens that distinction can be neatly mapped to core concepts of software engineering.

P.S. Thesauruses & Ontologies

Ontologies are systematic accounts of existence for whatever is considered, in other words some explicit specification of the concepts meant to make sense of a universe of discourse. From that starting point three basic observations can be made:

  1. Ontologies are made of categories of things, beings, or phenomena; as such they may range from simple catalogs to philosophical doctrines.
  2. Ontologies are driven by cognitive (i.e non empirical) purposes, namely the validity and consistency of symbolic representations.
  3. Ontologies are meant to be directed at specific domains of concerns, whatever they can be: politics, religion, business, astrology, etc.

With regard to models, only the second one puts ontologies apart: contrary to models, ontologies are about understanding and are not supposed to be driven by empirical purposes.

On that basis, ontologies can be understood as thesauruses describing galaxies of concepts (stars) and features (planets) held together by semantic gravitation weighted by similarity or proximity. As such ontologies should be NIEM’s tool of choice.

Further Reading

External Links

New Year: 2016 is the One to Learn

December 15, 2016

Sometimes the future is best seen through rear-view mirrors; given the advances of artificial intelligence (AI) in 2016, hindsight may help for the year to come.

(J.Bosh)

Deep Mind Learning (J.Bosh)

Deep Learning & the Depths of Intelligence

Deep learning may not have been discovered in 2016 but Google’s AlphaGo has arguably brought a new dimension to artificial intelligence, something to be compared to unearthing the spherical Earth.

As should be expected for machines capabilities, artificial intelligence has for long been fettered by technological handcuffs; so much so that expert systems were initially confined to a flat earth of knowledge to be explored through cumbersome sets of explicit rules. But exponential increase in computing power has allowed neural networks to take a bottom-up perspective, mining for implicit knowledge hidden in large amount of raw data.

Like digging tunnels from both extremities, it took some time to bring together top-down and bottom-up schemes, namely explicit (rule-based) and implicit (neural network-based) knowledge processing. But now that it comes to fruition, the alignment of perspectives puts a new light on the cognitive and social dimensions of intelligence.

Intelligence as a Cognitive Capability

Assuming that intelligence is best defined as the ability to solve problems, the first criterion to consider is the type of input (aka knowledge) to be used:

  • Explicit: rational processing of symbolic representations of contexts, concerns, objectives, and policies.
  • Implicit: intuitive processing of factual (non symbolic) observations of objects and phenomena.

That distinction is broadly consistent with the one between humans, seen as the sole symbolic species with the ability to reason about explicit knowledge, and other animal species which, despite being limited to the processing of implicit knowledge, may be far better at it than humans. Along that understanding, it would be safe to assume that systems with enough computing power will sooner or later be able to better the best of animal species, in particular in the case of imperfect inputs.

Intelligence as a Social Capability

Alongside the type of inputs, the second criterion to be considered is obviously the type of output (aka solution). And since classifications are meant to be built on purpose, a typology of AI outcomes should focus on relationships between agents, humans or otherwise:

  • Self-contained: problem-solving situations without opponent.
  • Competitive: zero-sum conflictual activities involving one or more intelligent opponents.
  • Collaborative: non-zero-sum activities involving one or more intelligent agents.

That classification coincides with two basic divides regarding communication and social behaviors:

  1. To begin with, human behavior is critically different when interacting with living species (humans or animals) and machines (dumb or smart). In that case the primary factor governing intelligence is the presence, real or supposed, of beings with intentions.
  2. Then, and only then, communication may take different forms depending on languages. In that case the primary factor governing intelligence is the ability to share symbolic representations.

A taxonomy of intelligence with regard to cognitive (reason vs intuition) and social (symbolic vs non-symbolic) capabilities may help to clarify the role of AI and the importance of deep learning.

Between Intuition and Reason

Google’s AlphaGo astonishing performances have been rightly explained by a qualitative breakthrough in learning capabilities, itself enabled by the two quantitative factors of big data and computing power. But beyond that success, DeepMind (AlphaGo’s maker) may have pioneered a new approach to intelligence by harnessing both symbolic and non symbolic knowledge to the benefit of a renewed rationality.

Perhaps surprisingly, intelligence (a capability) and reason (a tool) may turn into uneasy bedfellows when the former is meant to include intuition while the latter is identified with logic. As it happens, merging intuitive and reasoned knowledge can be seen as the nexus of AlphaGo decisive breakthrough, as it replaces abrasive interfaces with smart full-duplex neural networks.

Intelligent devices can now process knowledge seamlessly back and forth, left and right: borne by DeepMind’s smooth cognitive cogwheels, learning from factual observations can suggest or reinforce the symbolic representation of emerging structures and behaviors, and in return symbolic representations can be used to guide big data mining.

From consumers behaviors to social networks to business marketing to supporting systems, the benefits of bridging the gap between observed phenomena and explicit causalities appear to be boundless.

Further Reading

External Links

Business Agility vs Systems Entropy

November 28, 2016

Synopsis

As already noted, the seamless integration of business processes and IT systems may bring new relevancy to the OOAD (Observation, Orientation, Decision, Action) loop, a real-time decision-making paradigm originally developed by Colonel John Boyd for USAF fighter jets.

Agility: Orientation (Lazlo Moholo-Nagy)

Agility & Orientation (Lazlo Moholo-Nagy)

Of particular interest for today’s business operational decision-making is the orientation step, i.e the actual positioning of actors and the associated cognitive representations; the point being to use AI deep learning capabilities to surmise opponents plans and misdirect their anticipations. That new dimension and its focus on information brings back cybernetics as a tool for enterprise governance.

In the Loop: OOAD & Information Processing

Whatever the topic (engineering, business, or architecture), the concept of agility cannot be understood without defining some supporting context. For OODA that would include: territories (markets) for observations (data); maps for orientation (analytics); business objectives for decisions; and supporting systems for action.

OODA loop and its actual (red) and symbolic (blue) contexts.

OODA loop and its actual (red) and symbolic (blue) contexts.

One step further, contexts may be readily matched with systems description:

  • Business contexts (territories) for observations.
  • Models of business objects (maps) for orientation.
  • Business logic (objectives) for decisions.
  • Business processes (supporting systems) for action.
ccc

The OODA loop and System Perspectives

That provides a unified description of the different aspects of business agility, from the OODA loop and operations to architectures and engineering.

Architectures & Business Agility

Once the contexts are identified, agility in the OODA loop will depend on architecture consistency, plasticity, and versatility.

Architecture consistency (left) is supposed to be achieved by systems engineering out of the OODA loop:

  • Technical architecture: alignment of actual systems and territories (red) so that actions and observations can be kept congruent.
  • Software architecture: alignment of symbolic maps and objectives (blue) so that orientation and decisions can be continuously adjusted.

Functional architecture (right) is to bridge the gap between technical and software architectures and provides for operational coupling.

Business Agility: systems architectures and business operations

Business Agility: systems architectures and business operations

Operational coupling depends on functional architecture and is carried on within the OODA loop. The challenge is to change tack on-the-fly with minimum frictions between actual and symbolic contexts, i.e:

  • Discrepancies between business objects (maps and orientation) and business contexts (territories and observation).
  • Departure between business logic (objectives and decisions) and business processes (systems and actions)

When positive, operational coupling associates business agility with its architecture counterpart, namely plasticity and versatility; when negative, it suffers from frictions, or what cybernetics calls entropy.

Systems & Entropy

Taking a leaf from thermodynamics, cybernetics defines entropy as a measure of the (supposedly negative) variation in the value of the information supporting the control of viable systems.

With regard to corporate governance and operational decision-making, entropy arises from faults between environments and symbolic surrogates, either for objects (misleading orientations from actual observations) or activities (unforeseen consequences of decisions when carried out as actions).

So long as architectures and operations were set along different time-frames (e.g strategic and tactical), cybernetics were of limited relevancy. But the seamless integration of data analytics, operational decision-making, and IT supporting systems puts a new light on the role of entropy, as illustrated by Boyd’s OODA and its orientation component.

Orientation & Agility

While much has been written about how data analytics and operational decision-making can be neatly and easily fitted in the OODA paradigm, a particular attention is to be paid to orientation.

As noted before, the concept of Orientation comes with a twofold meaning, actual and symbolic:

  • Actual: the positioning of an agent with regard to external (e.g spacial) coordinates, possibly qualified with the agent’s abilities to observe, move, or act.
  • Symbolic: the positioning of an agent with regard to his own internal (e.g beliefs or aims) references, possibly mixed with the known or presumed orientation of other agents, opponents or associates.

That dual understanding underlines the importance of symbolic representations in getting competitive edges, either directly through accurate and up-to-date orientation, or indirectly by inducing opponents’ disorientation.

Agility vs Entropy

Competition in networked digital markets is carried out at enterprise gates, which puts the OODA loop at the nexus of information flows. As a corollary, what is at stake is not limited to immediate business gains but extends to corporate knowledge and enterprise governance; translated into cybernetics parlance, a competitive edge would depend on enterprise ability to export entropy, that is to decrease confusion and disorder inside, and increase it outside.

Working on that assumption, one should first characterize the flows of information to be considered:

  • Territories and observations: identification of business objects and events, collection and analysis of associated data.
  • Maps and orientations: structured and consistent description of business domains.
  • Objectives and decisions: structured and consistent description of business activities and rules.
  • Systems and actions: business processes and capabilities of supporting systems.
cccc

Static assessment of technical and software architectures for respectively observation and decision

Then, a static assessment of information flows would start with the standing of technical and software architecture with regard to competition:

  • Technical architecture: how the alignment of operations and resources facilitate actions and observations.
  • Software architecture: how the combined descriptions of business objects and logic facilitate orientation and decision.

A dynamic assessment would be carried out within the OODA loop and deal with the role of functional architecture in support of operational coupling:

  • How the mapping of territories’ identities and features help observation and orientation.
  • How decision-making and the realization of business objectives are supported by processes’ designs.
ccccc

Dynamic assessment of decision-making and the realization of business objectives’ as supported by processes’ designs.

Assuming a corporate cousin of  Maxwell’s demon with deep learning capabilities standing at the gates in its OODA loop, his job would be to analyze the flows and discover ways to decrease internal complexity (i.e enterprise representations) and increase external one (i.e competitors’ representations).

Further Readings

Things Behavior & Social Responsibility

October 27, 2016

Contrary to security breaks and information robberies that can be kept from public eyes, crashes of business applications or internet access are painfully plain for whoever is concerned, which means everybody. And as illustrated by the last episode of massive distributed denial of service (DDoS), they often come as confirmation of hazards long calling for attention.

robot_waynemiller

Device & Social Identity (Wayne Miller)

Things Don’t Think

To be clear, orchestrated attacks through hijacked (if unaware) computers have been a primary concern for internet security firms for quite some time, bringing about comprehensive and continuous reinforcement of software shields consolidated by systematic updates.

But while the right governing hand was struggling to make a safer net, the other hand thoughtlessly brought in connected objects to a supposedly new brand of internet. As if adding things with software brains cut to the bone could have made networks smarter.

And that’s the catch because the internet of things (IoT) is all about making room for dumb ancillary objects; unfortunately, idiots may have their use for literary puppeteers with canny agendas.

Think Again, or Not …

For old-timers with some memory of fingering through library cardboard, googling topics may have looked like dreams: knowledge at one’s fingertips, immediately and comprehensively. But that vision has never been more than a fleeting glimpse in a symbolic world; in actuality, even at its semantic best, the web was to remain a trove of information to be sifted by knowledge workers safely seated in their gated symbolic world. Crooks of course could sneak in as knowledge workers, armed with fountain pens, but without guns covered by the second amendment.

So, from its inception, the IoT has been a paradoxical endeavor: trying to merge actual and symbolic realms that would bypass thinking processes and obliterate any distinction. For sure, that conundrum was supposed to be dealt with by artificial intelligence (AI), with neural networks and deep learning weaving semantic threads between human minds and networks brains.

Not surprisingly, brainy hackers have caught sight of that new wealth of chinks in internet armour and swiftly added brute force to their paraphernalia.

But in addition to the technical aspect of internet security, the recent Dyn DDoS attack puts the light on its social perspective.

Things Behavior & Social Responsibility

As far as it remained intrinsically symbolic, the internet has been able to carry on with its utopian principles despite bumpy business environments. But things have drastically changed the situation, with tectonic frictions between symbolic and real plates wreaking havoc with any kind of smooth transition to internet.X, whatever x may be.

Yet, as the diagnose is clear, so should be the remedy.

To begin with, the internet was never meant to become the central nervous system of human societies. That it has happened in half a generation has defied imagination and, as a corollary, sapped the validity of traditional paradigms.

As things happen, the epicenter of the paradigms collision can be clearly identified: whereas the internet is built from systems, architectures taxonomies are purely technical and ignore what should be the primary factor, namely what kind of social role a system could fulfil. That may have been irrelevant for communication networks, but is obviously critical for social ones.

Further Reading

External Links

Conceptual Models & Abstraction Scales

March 22, 2016

Following the recent publication of a new standard for conceptual modeling of automation systems (Object-Process Methodology (ISO/PAS 19450:2015) it may be interesting to explore how it relates to abstraction and meta-models.

oskar-schlemmer-at-bahaus

Meta-models are drawn along lean abstraction scales (Oskar Schlemmer )

Models & Meta Models

Just like models are meant to describe sets of actual instances, meta-models are meant to do the same for sets of modeling artifacts independently of their targets. Along that reasoning, conceptual modeling of automation systems could be achieved either with a single language covering all aspects, or with a meta-language dealing with different sets of models, e.g MDA’s computation independent, platform independent, and platform specific models.

Modeling Languages covering technical, functional, and business concerns.

Two alternative options for the modeling of automation systems: unified language, or a meta language covering technical (e.g PSMs), functional (e.g PIMs), and business (e.g CIMs) scopes.

Given a model based engineering framework (e.g MDA), meta-models are generally used to support downstream models transformation targeting designs and code. But when upstream conceptual models are concerned, the challenge is to tackle the knowledge-to-systems transition. For that purpose some shared modeling roof is required for the definition of the symbolic footprint of the targeted business in the automation system under consideration.

Symbolic Footprint

Given that automation systems are meant to manage symbolic objects (aka surrogates), one should expect the distinction between actual instances and their symbolic representations to be the cornerstone of corresponding modeling languages. Along that reasoning, modeling of automation systems should start with the symbolic representation of actual business footprints, namely: the sets of objects, events, and processes, the roles played by agents (aka active objects), and the description of the associated states and rules. Containers would be added for the management of collections.

Automation systems modeling begins with the symbolic representation of actual instances

Automation systems modeling begins with the symbolic representation by systems of actual instances of business related objects and phenomena.

Next, as illustrated by the Object/Agent hierarchy, business worlds are not flat but built from sundry structures and facets to be represented by multiple levels of descriptions. That’s where abstractions are to be introduced.

Abstraction & Variants

The purpose of abstractions is to manage variants, and as such they can be used in two ways:

  • For partial descriptions of actual instances depending on targeted features. That can be achieved using composition (for structural variants) and partitions (for functional ones).
  • As hierarchies of symbolic descriptions (aka types and sub-types) subsuming variants identified at instances level.

On that basis the challenge is to find the level of detail (targeted actual instances) and abstraction (symbolic footprint) that will best describe supporting systems functionalities. Such level will have to meet two conditions:

  1. A minimal number of comprehensive and exclusive categories covering the structural variants of the sets of instances to be uniformly, consistently, and continuously identified by both enterprise and supporting systems.
  2. A consistent but adjustable set of types and sub-types anchored to the core structural categories and covering the functional variants .

Climbing up and down abstraction ladders looking for right levels is arguably the critical part of conceptual modeling, but the search will greatly benefit from the distinction between models and meta-models. Assuming meta-models are meant to ignore domain specific features altogether, they introduce a qualitative gap on abstraction scales as the respective hierarchies of models and meta-models are targeting different kind of instances. The modeling of agents and roles epitomizes the benefits of that distinction.

Abstraction & Meta Models

Taking customers for example, a naive approach would use Customer as a modeling type inheriting from a super-type, e.g Party. But then, if parties are to be uniformly identified (#), that would preclude any agent for playing multiple roles, e.g customer and supplier.

A separate description of parties and roles would clearly be a better option as it would unify the identification of the former without introducing unwarranted constraints on the latter which would then be defined and identified as the realization of a relationship played by a party.

Not surprisingly, that distinction would also be congruent with the one between models and meta-model:

  • Meta-models will describe generic aspects independently of domain-specific considerations, in particular organizational context (units and roles) and interactions with systems (a).
  • Models will define StaffSupplier and Customer according to the semantics of the business considered (b).
Composition, partitions and specialization can be used to detail the symbolic footprint

Composition, partitions and specialization can be used along two different abstraction scales.

That distinction between abstraction scales can also be applied to the conceptual modeling of automation systems.

Abstraction Scales & Conceptual Models

To begin with definitions, conceptual representations could be used for all mental constructs, whereas symbolic representations would be used only for the subset earmarked for communication purposes. That would mean that, contrary to conceptual representations that can be detached of business and enterprise practicalities, symbolic representations are necessarily built on design, and should be assessed accordingly. In our case the aim of such representations would be to describe the exchanges between business processes and supporting systems.

That understanding neatly fits the conceptual modeling of automation systems whose purpose would be to consolidate generic and business specific abstraction scales, the former for symbolic representations of the exchanges between business and systems, the latter symbolic representation of business contents.

At this point it must be noted that the scales are not necessarily aligned in continuity (with meta-models’ being higher and models’ being lower) as their respective ontologies may overlap (Organizational Entity and Party) or cross (Function and Role).

Toward a System Modeling Ontology

Along an analytic perspective, ontologies are meant to determine the categories that can comprehensively and consistently denote the instances of a domain under consideration. With regard to the modeling of automation systems, a relevant ontology would map a subset of semantic categories (for conceptual representations) to functional ones (for systems symbolic representations).

Further Reading

External Links

AlphaGo & Non-Zero-Sum Contests

March 14, 2016

The recent and decisive wins of Google’s AlphaGo over the world best Go player have been marked as a milestone on the path to general artificial intelligence, one that would be endowed with the same sort of capabilities as its human model. Yet, such assessment may reflect a somewhat mechanical understanding of human intelligence.

(PaoloUccello)

Human intelligence goes well beyond winning zero-sum contests (Paolo Uccello)

What Machines Can Know

As previously noted, human intelligence relies on three categories of knowledge:

  1. Acquired through senses (views, sounds, smells, touches) or beliefs (as nurtured by our common “sense”). That is by nature prone to circumstances and prejudices.
  2. Built through reasoning, i.e the mental processing of symbolic representations. It is meant to be universal and open to analysis, but it offers no guarantee for congruence with actual reality.
  3. Attained through judgment bringing together perceptions, intuitions, and symbolic representations.

Given the exponential growth of their processing power, artificial contraptions are rapidly overtaking human beings on account of perceptions and reasoning capabilities. Moreover, as demonstrated by the stunning success of AlphaGo, they may, sooner rather than later, take the upper hand for judgments based on fixed sets (including empty ones) of symbolic representations. Would that means game over for humans ?

Maybe not, as suggested by the protracted progresses of IBM’s Watson for Oncology which may come as a marker of AI limits when non-zero-sum games are concerned. And there is good reason for that: human intelligence has evolved against survival stakes, not for games sake, and its innate purpose is to make fateful decisions when faced with unpredictable prospects: while machines look for pointless wins, humans aim for meaningful victories

What Animals Can Win

Left to their own, games are meant to be pointless: winning or losing is not to affect players in their otherwise worldly affairs. As a corollary, games intelligence can be disembodied, i.e detached from murky perceptions and freed from fuzzy down-to-earth rules. That’s not the case for real-life contests, especially the ones that drove the development of animal brains aeons ago; then, the constitutive and formative origins of intelligence were to rely on senses without sensors, reason without logic, and judgment without philosophy. The difference with gaming machines is therefore not so much about stakes as about the nature of built-in capabilities: animal intelligence has emerged from the need to focus on actual situations and immediate decision-making without the paraphernalia of science and technology. And since survival is by nature individual, the exercise of animal intelligence is intrinsically singular, otherwise (i.e were the outcomes been uniform) there could have been no selection. As far as animal intelligence is concerned opponents can only be enemies and winners are guaranteed to take all the spoils: no universal reason should be expected.

So, animal intelligence adds survival considerations to the artificial one, but it lacks symbolic and cooperative dimensions.

How Humans Can Win

Given its unique symbolic capability, the human species have been granted a decisive superiority in the evolution race. Using symbolic representations to broaden the stakes, take into account externalities, and build strategies for a wider range of possibilities, human intelligence clearly marks the evolutionary edge between human and other species. The combined capabilities to process non symbolic (aka implicit) knowledge and symbolic representations may therefore define the playground for human and artificial intelligence. But that will not take the cooperative dimension into account.

As it happens, the ability to process symbolic representations has a compound impact on human intelligence by bringing about a qualitative leap not only with regard to knowledge but, perhaps even more critically, with regard to cooperation. Taking leaves from R. Wright, and G. Lakoff, such breakthrough would not be about problem solving but about social destiny: what characterizes human intelligence would be an ability to assess collective aims and consequently to build non-zero-sum strategies bringing shared benefits.

Back to the general artificial intelligence project, the real challenge would be to generalize deep learning to non-zero-sum competition and its corollary, namely the combination and valuation of heterogeneous yet shared actual stakes.

However, as pointed by Lee Sedol, “when it comes to human beings, there is a psychological aspect that one has to also think about.” In other words, as noted above), human intelligence has a native and inherent emotional dimension which may be an asset (e.g as a source of creativity) as well as a liability (when it blurs some hazards).

Further Readings

External Links

Agile Collaboration & Social Creativity

February 22, 2016

Open-plan offices and social networks are often seen as significant factors of collaboration and innovation, breeding and nurturing the creativity of knowledge workers, weaving their ideas into webs of truths, and molding their minds into some collective intelligence.

Brains need some breathing space

Open-plan offices, collaboration, and knowledge workers creativity

Yet, as creativity comes with agility, knowledge workflows should give brains enough breathing space lest they get more pressure than pasture.

Collaboration & Thinking Flows

Collaboration is a means to an end. To be of any use exchanges have to be fed with renewed ideas and assumptions, triggering arguments and adjustments, and opening new perspectives. If not they may burn themselves out with hollow considerations blurring clues and expectations, clogging the channels, and finally stemming the thinking flows.

Taking example from lean manufacturing, the first objective should be to streamline knowledge workflows as to eliminate swirling pools of squabbles, drain stagnant puddles of stale thoughts, and gear collaboration to flowing knowledge streams. As illustrated by flood irrigation, the first step is to identify basin levels.

Dunbar Numbers & Collaboration Basins

Studying the grooming habits of social primates, psychologist Robin Dunbar came to the conclusion that the size of social circles that individuals of a living species can maintain is set by the size of brain’s neocortex. Further studies have confirmed Dunbar’s findings, with the corresponding sizes for humans set around 10 for trusted personal groups and 150 for untried social ones. As it happens, and not by chance, those numbers seem to coincide with actual observations: the former for personal and direct collaboration, the latter for social and mediated collaboration.

Based on that understanding, the objective would be to organize knowledge workflows across two primary basins:

  • On-site and face-to-face collaboration with trusted co-workers. Corresponding interactions would be driven by personal dispositions and attitudes.
  • On-line and networked collaboration with workers, trusted or otherwise. Corresponding interactions would be based on shared interests and past exchanges.

Knowledge Workflows

The aim of knowledge workflows is to process data into information and put it to use. That is to be achieved by combining different kinds of tasks, in particular:

  • Data and information management: build the symbolic descriptions of contexts, concerns, and means.
  • Objectives management: based on a set of symbolic descriptions, identify and refine opportunities together with the ways to realize them.
  • Tasks management: allocate rights and responsibilities across organizations and collaboration frames, public and shallow or personal and deep.
  • Flows management: monitor and manage actual flows, publish arguments and propositions, consolidate decisions, …

Taking into account constraints and dependencies between the tasks, the aims would be to balance creativity and automation while eliminating superfluous intermediate products (like documents or models) or activities (e.g unfocused meetings).

With regard to dependencies, KM tasks are often intertwined and cannot be carried out sequentially; moreover, as illustrated by the impact of “creative accounting” on accounted activities, their overlapping is not frozen but subject to feedback, changes and adjustments.

With regard to automation, three groups are to be considered: the first requires only raw processing power and can be fully automated; the second also involves some intelligence that may be provided by smart systems; and the third calls for decision-making that can only be done by human agents entitled by the organization.

At first sight some lessons could be drawn from lean manufacturing, yet, since knowledge processes are not subject to hardware constraints, agile approaches should provide a more informative reference.

Iterative Knowledge Processing

A simple preliminary step is to check the applicability of agile principles by replacing “software” by “knowledge”. Assuming that ground is secured, the core undertaking is to consider what would become of cycles and iterations when applied to knowledge processing:

  • Cycle invariants: tasks would be iterated on given sets of symbolic descriptions applied to the state of affairs (contexts, concerns, and means).
  • Iterations content: based on those descriptions data would be processed into information, changes would be monitored, and possibilities explored.
  • Exit condition: cycles would complete with decisions committing changes in the state of affairs that would also entail adjustments or changes in symbolic descriptions.

That scheme meets three of the basic tenets of the agile paradigm, i.e open scope (unknowns cannot be set in advance), continuity of delivery (invariants are defined and managed by knowledge workers), and users in driving seats (through exit conditions). Yet it still doesn’t deal with creativity and the benefits of collaboration for knowledge workers.

Thinking Space & Pace

The scope of creativity in processes is neatly circumscribed by the nature of flows, i.e the possibility to insert knowledge during the processing: external for material flows (e.g in manufacturing), internal for symbolic flows (e.g in software engineering and knowledge processing).

Yet, whereas both software engineering and knowledge processes come with some built-in capability to redefined their symbolic flows on-the-fly, they don’t grant the same room to creativity. Contrary to software engineering projects which have to close their perspectives on the delivery of working products, knowledge processes are meant to keep them open to new understandings and opportunities. For the former creativity is the means to an end, for the latter it’s the end in itself, with collaboration as means.

Such opposite perspectives have direct consequences for two basic agile collaboration mechanisms: backlog and time-boxing:

  • Backlogs are used to structure and manage the space under exploration. But contrary to software processes whose space is focused and structured by users’ needs, knowledge processes are supposed to play on workers’ creativity to expand and redefine the range under consideration.
  • Time-boxes are used to synchronize tasks. But with creativity entering the fray, neither space granularity or thinking pace can be set in advance and coerced into single-sized boxes. In that case individuals must remain in full control of the contents and stride of their thinking streams.

It ensues that when creativity is the primary success factor standard agile collaboration mechanisms are falling short and intelligent collaboration schemes are to be introduced.

Creativity & Collaboration Tiers

The synchronization of creative activities has to deal with conflicting objectives:

  • On one hand the mental maps of knowledge workers and the stream of their thoughts have to be dynamically aligned.
  • On the other hand unsolicited face-to-face interactions or instant communications may significantly impair the course of creative thinking.

When activities, e.g software engineering, can be streamlined towards the delivery of clearly defined outcomes, backlogs and time-boxes can be used to harness workers’ creativity. When that’s not the case more sophisticated collaboration mechanisms are needed.

Assuming that mediated collaboration has a limited impact on thinking creativity (emails don’t have to be answered, or even presented, instantly), the objective is to steer knowledge workflows across a two-tiered collaboration framework: one personal and direct between knowledge workers, the other social and mediated through enterprise or institutional networks.

On the first tier knowledge workers would manage their thinking flows (content and tempo) independently, initiating or accepting personal collaboration (either through physical contact or some kind of instant messaging) depending on their respective “state of mind”.

The second tier would be for social collaboration and would be expected to replace backlogs and time-boxing. Proceeding from the first to the second tier would be conditioned by workers’ needs and expectations, triggered on their own initiative or following prompts.

From Personal to Collective Thinking

The challenging issue is obviously to define and implement the mechanisms governing the exchanges between collaboration tiers, e.g:

  • How to keep tabs on topics and contents to be safeguarded.
  • How to mediate (i.e filter and time) the solicitations and contribution issued by the social tier.
  • How to assess the solicitations and contribution issued by individuals.
  • How to assess and manage knowledge deemed to remain proprietary.
  • How to identify and manage knowledge workers personal and social circles.

Whereas such issues are customary tackled by various AI systems (knowledge management, decision-making, multi-players games, etc), taken as a whole they bring up the question of the relationship between personal and collective thinking, and as a corollary, the role of organization in nurturing corporate innovation.

Conclusion: Collaboration Spaces vs Panopticon

As illustrated by the rising of futuristic headquarters, leading technology firms have been trying to tackle these issues by redefining internal architecture as collaboration spaces. Compared to traditional open spaces, such approaches try to fuse physical and digital spaces into overlapping layers of collaboration spaces, using artificial intelligence to harness cooperation.

Yet, lest uniform and comprehensive transparency brings the worrying shadow of a panopticon within which everyone can be unknowingly observed, working spaces have to be designed as to enhance collaboration without trespassing on privacy.

That could be achieved with a layered transparency set along the nature of collaboration:

  • Immediate and personal: working cells regrouping 5 to 10 workstations earmarked for a task and used indifferently by teams members.
  • Delayed and personal: open physical spaces accommodating working cells, with instant messaging and geo-localization; spaces are hinged on domains and focused on shared knowledge.
  • On-line and networked: digital spaces merging physical spaces and organizational structures.

That mix of physical and virtual spaces could be dynamically redefined depending on activities, projects, location, and organisation.

Further Readings

External Links


Hexa

Your content with a new angle at WordPress.com

IT Modernization < V.Hanniet

About IT Modernization

IT Modernization < V. Hanniet

software model driven approaches

Caminao's Ways

Do systems know how symbolic they are ?